Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorFeng-Shou Yangen_US
dc.identifier.citation1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, 'Two-dimensional atomic crystals.' PNAS, 102(30), 10451-10453(2005). 2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, 'Two-dimensional gas of massless Dirac fermions in graphene.' Nature, 438(7065), 197-200(2005). 3. J. A. Wilson, and A. D. Yoffe, 'The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties.' Adv. Phys, 18(73), 193-335(1969). 4. A. D. Yoffe 'Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems.' Adv. Phys, 42(2), 173-262(1993) 5. J. A. Wilson, and A. D. Yoffe. 'The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties.' Adv. Phys, 18(73), 193-335(1969). 6. Q. H. Huang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano 'Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.' Nat. Nanotechnol., 7(11), 699-712(2012). 7. V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, ' High-mobility field-effect transistors based on transition metal dichalcogenides.' Appl. Phys. Lett. 84(17), 3301-3303(2004). 8. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, 'High-performance single layered WSe2 p-FETs with chemically doped contacts.' Nano Lett., 12(7), 3788-3792(2012). 9. S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, 'High performance multilayer MoS2 transistors with scandium contacts.' Nano Lett., 13(1), 100–105 (2013). 10. H. Liu, M. Si†, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, J. Lou, and P. D. Ye, 'Channel length scaling of MoS2 MOSFETs.' ACS Nano, 6(10), 8563–8569 (2012). 11. H. Liu, M. Si, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, J. Lou, and P. D. Ye, 'Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films.' Nano Lett. 13, 2640–2646 (2013). 12 Y. Liu, H. Wu, H. C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo, N. O. Weiss, Y. Huang, and X.F Duan, 'Toward barrier free contact to molybdenum disulfide using graphene electrodes.' Nano Lett. 15(5), 3030-3034(2015). 13. Liu, Yuan, et al. 'Van der Waals heterostructures and devices.' Nature Reviews Materials 1.9 (2016): 16042. 14. I. Ferain, C. A. Colinge and J. P. Colinge, 'Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors.' Nature, 479(7373), 310-316(2011). 15. D. A. Neamen, 'Semiconductor physics and devices basic principles' 4th(2011) 16. M. A. Lampert, 'Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps.' Phys. Rev., 103(6),1648-1656(1956). 17. YANG, Edward S. Microelectronic devices. New York: McGraw-Hill, 1988. 18. D. K. Schroder, 'Semiconductor material and device characterization'. John Wiley & Sons (2006). 19. A. Allain, J. Kang, K. Banerjee ,and A. Kis, 'Electrical contacts to two-dimensional semiconductors.' Nat. Mater., 14(12), 1195–1205 (2015) 20. M. Haartman, and M. Östling., 'Low-frequency noise in advanced MOS devices.' , Springer Science & Business Media.(2007) 21. G. Ghibaudo, 'New method for the extraction of MOSFET parameters.' Electronics Letters, 24(9), 543-545(1988). 22 J. B. Johnson, 'Thermal agitation of electricity in conductors.' Phys. Rev., 32(1), 97(1928). 23. H. Nyquist, 'Thermal agitation of electric charge in conductors.' Phys. Rev., 32(1), 110(1928). 24. K. H. Lundberg, 'Noise sources in bulk CMOS.' Unpublished paper, 3(2002). 25. F. Hooge, '1/f noise is no surface effect.' Phys. Lett., 29, 139-140(1969) 26. O.Jäntsch, 'A theory of noise at semiconductor surfaces.', Solid-State Electronics, 11(2), 267-272(1968) 27. R. Jayaraman, and C.G. Sodini, 'A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon.' IEEE Trans. Electron Devices, 36(9), 1773-1782(1989). 28. D. Rigaud, M. Valenza,and J. Rhayem, 'Low frequency noise in thin film transistors.' Proc. IEEE, 149(1), 75-82(2002). 29. F. N. Hooge, '1/f noise.' Physica B+ C, 83(1), 14-23(1976). 30. K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, 'A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors.' IEEE Trans. Electron Devices, 37(3), 654-655(1990). 31. H. L. Tang, M. H. Chiu, C. C. Tseng, S. H. Yang, K. J. Hou, S. Y. Wei, J. K. Huang, Y. F. Lin, C. H. Lien, and L. J. Li, 'Multilayer Graphene–WSe2 Heterostructures for WSe2 Transistors.' ACS Nano, 11(12),12817-12823(2017). 32. J. Kang, D. Shin , S. Bae and B. H. Hong, 'Graphene Transfer: Key for Applications.' Nanoscale, 4(18), 5527-5537(2012). 33. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee' Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors.' , Nano Lett., 13(5), 1983-1990 (2013). 34. C. H. Chen, C. L. Wu, J. Pu, M. H. Chiu, P. Kumar, T. Takenobu and L. J. Li,. 'Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration.' 2D Materials , 1(3), 034001(2014). 35. J. Huang , L. Yang , D. Liu , J. Chen , Q. Fu , Y. Xiong , F. Lin and B. Xiang, 'Large-area synthesis of monolayer WSe 2 on a SiO 2/Si substrate and its device applications.' Nanoscale, 7(9), 4193-4198(2015). 36. K. Park, Y. Kim, J. G. Song, S. J. Kim, C. W. Lee, G. H. Ryu, Z. Lee, J. Park and H. Kim, 'Uniform, large-area self-limiting layer synthesis of tungsten diselenide.' 2D Materials, 3(1), 014004 (2016). 37. M. H. D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie, C.J Kim, D. A. Muller, D. C. Ralph, and J. Park 'Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials.' ACS Nano, 10(6), 6392−6399(2016). 38. X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song, L. Yu, S. Huang, W. Fang, X. Zhang, A. L. Hsu, Y. Bie, Y. H Lee, Y. Zhu, L. Wu, J. Li, P. J. Herrero, M. Dresselhaus, T. Palacios and J. Kong, 'Parallel Stitching of 2D Materials.' Adv. Mater., 28(12), 2322−2329(2016).zh_TW
dc.description.abstractThe discovery of two-dimensional materials has attracted many people's attention, with the development of science and technology, the more thin the component size, the production of components has also face many challenges. The two-dimensional material and metal contact to produce contact resistance, contact resistance will affect the characteristics of the transistor itself so that its component characteristics become very poor. As a result, many people study the contact resistance of transverse graphene and molybdenum disulfide or graphene to the heterogeneous structure of tungsten disulfide. It is confirmed that graphene can actually reduce contact resistance, but many people's literature is studying n-type semiconductor materials, and the lack of p-type materials also applies to this result. The use of CVD grown graphene and WSe2 as a heterostructure transistor, and measured by direct flow measurements and low-frequency noise measurements, have confirmed that graphene reduces contact resistance (Rsd) and makes Graphene/WSe2/graphene transistors Ion/Ioff is greater than 106 and all parameters are elevated. The carrier number fluctuation (CNF) is analyzed by the low frequency noise, because the carrier is caused by the defect catching and releasing. The defect not only comes from the surface of the dielectric layer and the channel surface, but also contains the density of the carrier defect in the channel. In order to realize the application of field-effect transistor, we measure the switching speed of two kinds of components through an oscilloscope and realize the application of logic inverter through the external circuit.en_US
dc.description.tableofcontents中文摘要 i Abstract ii 圖目錄 v 第一章 緒論 1 第二章 文獻回顧 2 2-1 二硒化鎢元件特性 2 2-2 二維材料接點電阻 7 2-3 研究動機 12 第三章 原理 13 3-1 場效應電晶體 13 3-2 低頻雜訊 17 第四章 實驗 23 4-1 元件 23 4-2 實驗設備 24 第五章 結果與討論 26 5-1 元件結構及材料特性 26 5-2 基本電學特性 27 5-3 低頻雜訊分析 30 5-4 應用 36 第六章 結論 38 參考資料 40zh_TW
dc.subjectfield effect transistorsen_US
dc.subjectTwo dimensional materialen_US
dc.subjectContact resistanceen_US
dc.subjectlow frequency noiseen_US
dc.titleCVD Graphene/WSe2/Graphene transistors: influence of graphene contactsen_US
dc.typethesis and dissertationen_US
item.openairetypethesis and dissertation-
item.fulltextwith fulltext-
Appears in Collections:物理學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105054020-1.pdf2.89 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.