Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97979
DC FieldValueLanguage
dc.contributor龔志榮zh_TW
dc.contributorJyh-Rong Gongen_US
dc.contributor.author彭德揚zh_TW
dc.contributor.authorDe-Yang Pengen_US
dc.contributor.other物理學系所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T06:22:21Z-
dc.identifier.citation[1] L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg,'Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,' Nanoscale 3(3), 1120–1126 (2011). [2] A. Malik, A. Sêco, E. Fortunato, and R. Martins, 'New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide,' Sens. Actuators A Phys. 67(1-3), 68–71 (1998). [3] E. Monroy, F. Omnѐs, and F. Calle, 'Wide-bandgap semiconductor ultraviolet photodetectors,' Semicond. Sci.Technol. 18(4), R33–R51 (2003). [4] R. Suzuki, S. Nakagomi, and Y. Kokubun, 'Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,' Appl. Phys. Lett. 98(13), 131114 (2011). [5] K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sada, M.Inoue, and M. Yano: J. Cryst. Growth 278 (2005). [6] M. Razeghi, 'Short-wavelength solar-blind detectors-status, prospects, and markets,' Proc. IEEE 90(6), 1006–1014 (2002). [7] X. Du, Z. Mei, Z. Liu, Y. Guo, T. Zhang, Y. Hou, Z. Zhang, Q. Xue, and A. Y. Kuznetsov, 'Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors,' Adv.Mater. 21(45), 4625–4630 (2009). [8] T. Takagi, H. Tanaka, Sz. Fujita, and Sg. Fujita: Jpn. J. Appl. Phys. 42 (2003). [9] M. Liao, Y. Koide, and J. Alvarez, 'Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact,' Appl. Phys. Lett. 87(2), 022105 (2005). [10] Y. Koide, M. Liao, and J. Alvarez, 'Thermally stable solar-blind diamond UV photodetector,' Diamond Related Materials 15(11-12), 1962–1966 (2006). [11] J. Y. Lee, Z. Y. Qiao, X. L. Chen, L. Chen, Y. G. Cao, M. He, H. Li, Z. M. Cao and Z. Zhang, J. Alloy. Compd. 306, 300 (2000). [12] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, 'Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,' Appl. Phys. Lett. 90(3), 031912 (2007). [13] P. Ravadgar, R. H. Horng, S. D. Yao, H. Y. Lee, B. R. Wu, S. L. Ou, and L. W. Tu, 'Effects of crystallinity andpoint defects on optoelectronic applications of β-Ga₂O₃ epilayers,' Opt. Express 21(21), 24599–24610 (2013). [14] T. Oshima, T. Okuno, and S. Fujita, 'Ga₂O₃ Thin Film Growth on c-Plane Sapphire Substrates by MolecularBeam Epitaxy for Deep-Ultraviolet Photodetectors,' Jpn. J. Appl. Phys. 46(11), 7217–7220 (2007). [15] Qian, L.-X.; Zhang, H.-F.; Lai, P. T.; Wu, Z.-H.; Liu, X.-Z., High-sensitivity β-Ga₂O₃ solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate. Optical Materials Express 7 (10), 3643-3653 (2017). [16] D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, 'Fabrication of β-Ga₂O₃ thin films and solar-blind photodetectors by laser MBE technology,' Opt. Mater. Express 4(5), 1067–1076 (2014). [17] F.-P. Yu, S.-L. Ou, and D.-S. Wuu, 'Pulsed laser deposition of gallium oxide films for high performance solarblindphotodetectors,' Opt. Mater. Express 5(5), 1240–1249 (2015). [18] W.S. Lau, P.W. Qian, N.P. Sandler, and K.A. Mckinley, P.K. Chu Jpn. J. Appl. Phys.,36, 661 (1997). [19] M. S. Silberberg, 'Chemistry: The Molecular Nature of Matter and Change' (3rd edition), McGraw Hill (2003). [20] Razeghi, M. and A. Rogalski, Semiconductor ultraviolet detectors. Journal of Applied Physics, (1996). [21] P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, W. Tang, Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector, J Mater Chem C 40 (5) (2017). [22] Y.H. An, Y.S. Zhi, Z.P. Wu, W. Cui, X.L. Zhao, D.Y. Guo, P.G. Li, W.H. Tang, Appl. Phys. A 122 (2016). [23] S. J. Pearton, J. Yang, P. H. Cary, IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, 'A review of Ga2O3 materials, processing, and devices,' Appl. Phys. Rev., vol. 5, no. 1, p. 011301, Jan. (2018)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97979-
dc.description.abstract本論文探討β-氧化鎵金屬-半導體-金屬(MSM)作為紫外光偵測器之元件暨結構等物理特性。β-氧化鎵薄膜採用原子層沉積法生長於氧化鋁基板上。β-氧化鎵薄膜原子層沉積法製程中,採用三乙基鎵(TEGa)和氧化亞氮(N2O)做為前驅氣體生長β-氧化鎵薄膜。β-氧化鎵MSM紫外光偵測器製作,則先將光罩貼在β-氧化鎵薄膜上,使用磁控濺鍍法將指叉金電極接至β-氧化鎵薄膜上,用以完成金屬-半導體-金屬之結構。β-氧化鎵薄膜之表面型態與各項物理特性使用掃描電子顯微術、X-光繞射儀分析;金-β-氧化鎵-金MSM紫外光偵測器之電性量測則以Keithely2400型分析儀來分析。依據X-光繞射儀分析之繞射圖可以觀察到在600⁰C下生長之氧化鎵薄膜為β相。且β-氧化鎵MSM紫外光偵測器之電流-電壓曲線顯示在未吸收光時,暗電流約為10-10~10-9安培、在收365nm的紫外光時且外加偏壓為5V時,光電流約為10-8安培、在吸收254nm的紫外光時光電流約為10-4安培,再次顯示金-(β-氧化鎵)-金之金屬-半導體-金屬(MSM)結構對於254nm紫外光之偵測相當顯著,有利於紫外光偵測器之應用。zh_TW
dc.description.abstractIn this thesis, β-Ga2O3 thin films were prepared by atomic layer deposition (ALD) deposited at 600oC under atmospheric pressure using triethylgallium (TEGa) and nitrous oxide (N2O) precursors as sources of Ga and O element in β-Ga2O3 thin film. To fabricate a solar-blind photodetector, interdigital Au electrode was deposited on the β-Ga2O3 thin film using shadow mask by magnet sputtering. The physic properties of β-Ga2O3 thin films were characterized using scanning electron microscopy (SEM) and θ-2θ X-ray diffractometer (XRD). The thicknesses of the β-Ga2O3 thin films were measured by cross-sectional SEM images. Based upon the XRD data, it appears that ALD-grown Ga2O3 thin film were β type in nature. The I-V curves of Au-(β-Ga2O3)-Au metal-semiconductor-metal (MSM) structure were measured by Keithley model 2400 source unit. According to the I-V plots, it shows that the dark current of the β-Ga2O3 MSM structure remains approximately 10-9 A. The photo current stays at 4×10-6 A and 1.5×10-3 A by applying a bias of 10V on the β-Ga2O3 MSM structure under 365nm and 254nm UV illumination ,respectively. It is evident that the ALD-grown β-Ga2O3 MSM structure is very sensitive to the 254nm UV illumination. Thus, it is suitable to serve as a solar blind photodetector.en_US
dc.description.tableofcontentsAcknowledgements…………………………..……………………….…... Abstract (in Chinese)…......…………………………………………….....i Abstract………………………………………………..………………....ii Table of contents……………………………………………………..….iii List of figures…………………………………………………………......v List of tables..……………………………………………………………vii Chapter 1. Introduction…………………………………………………...1 Chapter 2. Background review……………………………………………3 2-1The working principles of photodetectors…………...……..….…….3 2-2 The definitions of performances of photodetectors………………...4 1.Dark current……………………………………………………….4 2.Photocurrent……...………………………………….………..…..4 3. External quantum efficiency……………………...……………....5 4. Responsivity………………………………………………..……..5 5. Photosesitivity…………………………………………………….5 6. Response time……………………………...……………………..6 2-3 The structure of UV photodetectors…………………………….…..7 1.Photoconductor………………………………...……………….....7 2.P-N junction…………………………………………………….....8 3.P-I-N junction……………………………………………………..9 4.Metal-Semiconductor(MS)..……………………………………..10 5.Metal-Semiconductor-Metal(MSM)……………………………..12 2-4 Literature review of β-Ga2O3 UV photodetectors………………....13 1.P-N junction……………………………………………………...13 2.P-I-N junction…….……………………………………………...15 3.Metal semiconductor metal……………………………………...17 2-5 Properties of β-Ga2O3 thin film………………………………..…..21 Chapter 3. Experimental process and analytical tools………..………….23 3-1 Substrate cleaning……………….…………………………………….23 3-2 Growth of β-Ga2O3 thin film by ALD process…………………….24 3-3 Scanning electron microscopy……………………………………28 3-4 X-ray diffractometer…………………………………….…………28 3-5 Shadow mask and sputtering………………………………………29 3-6 Keithley model 2400 source measurement unit……………………30 Chapter 4. Results and discussion………………..………..……………33 4-1 Characterization of β-Ga2O3 thin film…………………….……….33 4-2 Characterization of Au-(β-Ga2O3)-Au metal-semiconductor-metal structures…………………………………………………….……..……37 Chapter 5. Conclusions and future works……….………..…………..…43 References……………………………………………………..……..…44zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2021-08-28起公開。zh_TW
dc.subject紫外光偵測器zh_TW
dc.subject金半金結構zh_TW
dc.subjectβ-氧化鎵zh_TW
dc.subject原子層沉積法zh_TW
dc.subjectphotodetectoren_US
dc.subjectMSMen_US
dc.subjectβ-Ga2O3en_US
dc.subjectatomic layer depositionen_US
dc.title原子層沉積成長之β-型氧化鎵紫外光偵檢元件物理特性之研究zh_TW
dc.titleInvestigation on the physical properties of β-Ga2O3 ultra-violet detectors prepared by atomic layer depositionen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2021-08-28zh_TW
dc.date.openaccess2021-08-28-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:物理學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105054008-1.pdf1.96 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.