Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97981
DC FieldValueLanguage
dc.contributor林彥甫zh_TW
dc.contributorYen-Fu Linen_US
dc.contributor.author宋永上zh_TW
dc.contributor.authorYung-Shang Sungen_US
dc.contributor.other物理學系所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T06:22:21Z-
dc.identifier.citation第一章 緒論 [1] K. S. Novoselov, A. K. Geim, and S. V. Morozov, Science 306-666 (2004). [2] D. W. B. A. C. Ferrari, M. I. Katsnelson, and A. K. Geim, Science 323-610 (2009). [3] Y. W. Tan, Y. Zhang, and K. Bolotin, Phys. Rev. Lett. 99, 246803 (2007). [4] Y. Huang, E. Sutter, and N. N. Shi, ACS Nano 9, 10612-10620 (2015). [5] A. C. Ferrari, F. Bonaccorso, and V. Fal'Ko, Nanoscale 7, 4598-4810 (2015). [6] N. W. Alcock, and A. Kjekshus, Acta Chem. Scand. 19, 79 (1965). [7] S. Yang, S. Tongay, and Y. Li, Nanoscale 6, 7226-7231 (2014). [8] B. Jariwala, D. Voiry, and A. Jindal, Chem. Mater. 28, 3352-3359 (2016). [9] B. Kang, Y. Kim, and J. H. Cho, 2D Materials 4, 025014 (2017). E. Zhang, P. Wang, and Z. Li, ACS Nano 10, 8067-8077 (2016) 第二章 文獻回顧 [1] N. W. Alcock, and A. Kjekshus, Acta Chem. Scand. 19, 79 (1965). [2] S. Yang, S. Tongay, and Y. Li, Nanoscale 6, 7226-7231 (2014). [3] B. Jariwala, D. Voiry, and A. Jindal, Chem. Mater. 28, 3352-3359 (2016). [4] B. Kang, Y. Kim, and J. H. Cho, 2D Mater. 4, 025014 (2017). [5] E. Zhang, P. Wang, and Z. Li, ACS Nano 10, 8067-8077 (2016). [6] M. Hafeez, L. Gan, and T. Zhai, Adv. Mater. 28, 8296-8301 (2016).   [7] D. Wolverson, S. Crampin, and S. J. Bending, ACS Nano 8, 11154-11164 (2014). [8] S. Yang, C. Wang, and S. Tongay, Nano Lett. 15, 1660-1666 (2015). [9] K. S. Novoselov, A. K. Geim, and A. A. Firsov, Science 306, 666 (2004). [10] F. Giubileo, and A. Di Bartolomeo, Progr. Surf. Sci. 92, 143-175 (2017). [11] D. Sinha, and J. U. Lee, Nano Lett. 14, 4660-4664 (2014). [12] J. Meng, H. D. Song, and D. P. Yu, Nanoscale 7, 11611-11619 (2015). [13] Y. F. Lin, W. Li, and K. Tsukagoshi, Nanoscale 6, 795-799 (2014). [14] D. Qu, X. Liu, and W. J. Yoo, Nanoscale 7, 19273-19281 (2015). [15] T. Roy, M. Tosun, and A. Javey, ACS Nano 8, 6259-6264 (2014). [16] D. W. B. A. C. Ferrari, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009). [17] Y. W. Tan, Y. Zhang, and P. Kim, Phys. Rev. Lett. 99, 246803 (2007). [18] 林永昌, 呂俊頡, 鄭碩方, & 邱博文. 物理雙月刊 33, 191-202 (2011). [19] H. Yang, J. Heo, and K. Kim, Science 336, 1140-1143 (2012). [20] H. Tian, Z. Tan, and T. L. Ren, Sci. Rep. 4, 5951 (2014). [21] S. Nakaharai, M. Yamamoto, and K. Tsukagoshi, ACS Nano 9, 5976-5983 (2015). [22] J. Trommer, A. Heinzig, and E. Zschech, ACS Nano 11, 1704-1711 (2017). 第三章 原理 [1] 孫允武,〈場效電晶體(MOSFET)操作原理〉,http://ezphysics.nchu.edu.tw/prophys/electron/lecturenote/7_2.pdf [2] Neamen, D. A., & 楊賜麟. 半導體物理與元件. 美商麥格羅希爾國際股份有限公司台灣分公司, 台北 (2005). [3] Donald A.. Neamen. Semiconductor physics and devices: basic principles. McGraw Hill (2003). [4] Dieter K. Schroder, 'Semiconductor Material and Device Characterization, 2rd Edition, john Wiley and Cons, Inc. (1998). [5] Von Haartman, M., et al., Low-frequency noise in advanced MOS devices. Springer Science & Business Media (2007). [6] M. K. Joo, B. H. Moon, and Y. H. Lee, ACS Appl. Mater. Interfaces 9, 5006-5013 (2017). [7] Y. Kim, W. Park, and B. H. Lee, Phys. Status Solidi RRL 10, 634-638 (2016).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/97981-
dc.description.abstract本研究將探討全二維結構ReSe2電晶體的雙極性電學傳輸特性,比較石墨烯材料與金屬Ti/Au材質作為電極應用的電學特性。實驗利用機械剝離法分離出薄層數的二硒化錸(通道)、六方氮化硼及石墨烯(作為絕緣層及電極),並採用乾式轉印堆疊組合出全二維結構二硒化錸場效電晶體,量測其基本電性,發現其呈現雙極性傳輸,分別取得元件在室溫下雙極性傳輸電子與電洞之載子遷移率、電流開關比、次臨界擺幅。並在變溫量測的結果中,分析接點蕭特基位障(Schottky barrier)的變化在n型傳輸中位障由0.4 eV,隨閘極偏壓增加,位障調變為0 eV形成歐姆接觸(Ohmic contact),並透過低頻雜訊(Low Frequency noise)的量測,佐證接點位障的相對關係,綜合上述結果證明了全二維結構利用石墨烯作為電極,相較於Ti/Au電極能有效調控並降低接點的蕭特基位障。 此外我們設計了源極、汲極控制閘(Source/Drain Control Gate)通過施加不對稱的電場來調控元件通道的局部能帶,使原本的雙極性傳輸電晶體,調控為n型電子傳輸或p型電洞傳輸的半導體元件,在同一個元件上實現不同的操作特性。並且在應用方面,透過邏輯電路設計,對元件作為反向器(inverter)應用的效能以及開關速度作測試,顯示本研究首創的全二維二硒化錸電晶體做為電子元件開發的無限潛力。zh_TW
dc.description.abstractLayered ReSe2 materials have attracted intensive interest due to its unique optical and electrical properties. Ambipolar properties, in which charge carriers can be polarized under either electron or hole dominances, are rarely reported. In this work, all-2D ReSe2 transistors with graphene as metal contact electrodes to reduce contact resistance and h-BN as a dielectric layer to facilitate scaling of the gate size as well as to lower charge-carrier scattering, are successfully fabricated to exhibit the ambipolar devices. Compared with the most commonly used Ti/Au contacts, our all-2D ReSe2 transistors with ambipolarity in charge transport display a better carrier mobility, higher current modulation (Ion/Ioff ratio), and smaller subthreshold swing. Through a careful analysis of temperature dependent electrical characteristics, such the ambipolarity can be attributed the existence of the Schottky barriers at the graphene-ReSe2 contact interface. Besides, the low-frequency noise measurement has been offered a self-consistent evident of the reason of the ambipolarity in our all-2D ReSe2 transistors. Finally, to prove the feasibility of the all-2D ReSe2 transistors on possible logic applications, the inverter-like and polarity controllable functions have further demonstrated as a proof of concept. The finding in this work provide an opportunity to use layered ReSe2 materials for next-generation electronics.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iii 圖表目次 v 第一章 緒論 1 參考文獻 2 第二章 文獻回顧 3 2.1 二硒化錸結構與特性 3 2.2 石墨烯電極應用與性質 5 2.3 雙極性傳輸元件應用 7 2.4 研究動機 9 參考文獻 9 第三章 原理 11 3.1 金氧半場效電晶體 11 3.2 蕭特基位障(Schottky barrier) 15 3.3 熱發射原理(Thermionic Emission Theory) 18 3.4 低頻雜訊(Low Frequency Noise) 21 3.5 邏輯電路 23 參考文獻 25 第四章 實驗 26 4.1 元件製備 26 4.2 實驗量測 33 第五章 結果與討論 36 5.1 全二維結構二硒化錸元件電性分析 36 5.1.1元件結構 36 5.1.2基本電學特性 38 5.1.3變溫量測分析 40 5.1.4低頻雜訊 42 5.2 石墨烯電極與金屬電極之特性比較 44 5.2.1元件結構與基本電性 44 5.2.2蕭特基位障分析 47 5.3 上閘極調控局部能帶 50 5.4 邏輯電路應用 54 第六章 結論 57zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2021-08-27起公開。zh_TW
dc.subject場效電晶體zh_TW
dc.subject二硒化錸zh_TW
dc.subject雙極性傳輸zh_TW
dc.subjectMOSFETen_US
dc.subjectReSe2en_US
dc.subjectambipolar transporten_US
dc.title探索全二維結構二硒化錸電晶體雙極性傳輸現象zh_TW
dc.titleExploring ambipolar transport based on All-2D ReSe2 Transistorsen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2021-08-27zh_TW
dc.date.openaccess2021-08-27-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:物理學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105054025-1.pdf4.46 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.