Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/97982
標題: 磁控變色磁流體之合成與光學特性研究
Synthesis and Characterization of Magnetic Fluid with Magnetically Tunable Optical Properties
作者: 蕭睿麟
Jui-Lin Hsiao
關鍵字: 磁性奈米粒子;磁流體;magnetic nanoparticles;Ferrofluid
引用: [1] Mingsheng Wang, and Yadong Yin, J. Am. Chem. Soc. 2016, 138, 6315−6323 [2] Jianping Ge, Yongxing Hu, Maurizio Biasini, Chungli Dong, Jinghua Guo, Ward P. Beyermann, and Yadong Yin, Chem. Eur. J. 2007, 13, 7153 – 7161 [3] Serhat Küçükdermenci, Deniz Kutluay, Ýbrahim Avgýn, Materiali in tehnologije / Materials and technology , 47 (2013) 1, 71–78 [4] Yixiao Dong, Bin Wen, Yanjun Chen, Pengqi Cao and Chaocan Zhang, RSC Adv., 2016, 6, 64434–64440. [5] LE HE, MINGSHENG WANG, JIANPING GE, and YADONG YIN, ACCOUNTS OF CHEMICAL RESEARCH, Vol. 45, No. 9, 2012, 1431–1440 [6] Dave SR, Gao X, Nanobiotechnol. 1 (2009) 583-609. [7] Uribe Madrid, Umapada Pal and Félix Sánchez-De Jesús, Advances in Nano Research, Vol. 2, No. 4 (2014) 187-198 [8] Wentao Wang, Bingtao Tang, Benzhi Ju and Shufen Zhang, RSC Adv., 2015, 5, 75292–75299. [9] Jianping Ge, Yongxing Hu, Maurizio Biasini, Ward P. Beyermann, and Yadong Yin, Angew. Chem. Int. Ed. 2007, 46, 4342 –4345. [10] Jianping Ge, Yongxing Hu, Tierui Zhang, Tuan Huynh, and Yadong Yin, Langmuir ,2008, 24, 3671-3680 [11] Jining Gao, Xinze Ran, Chunmeng Shi, Humin Cheng, Tianmin Cheng and Yongping Su, Nanoscale, 2013, 5, 7026–7033 [12]陳建銘 '鐵核金殼磁性奈米粒子增強法拉第磁光效應之特性研究及在阿茲海默症檢測之應用' 國立中興大學奈米科學研究所碩士學位論文, 2017年 [13] Chao Hui, Chengmin Shen, Tianzhong Yang, Lihong Bao, Jifa Tian, Hao Ding, Chen Li, and H.-J. Gao, J. Phys. Chem. C 2008, 112, 11336–11339 [14] Hui Wang, Yu-Bing Sun, Qian-Wang Chen, Yi-Fei Yu and Kai Cheng, Dalton Trans., 2010, 39, 9565–9569
摘要: 
磁性具有不容易被屏蔽並且能以非接觸式的方式施加外部刺激引起快速且可逆的響應之特性,這兩點特點使磁性響應材料在應用上具有獨特優勢。在本研究中,我們製作Fe3O4磁性奈米粒子,並利用聚(4-苯乙烯磺酸-共-馬來酸)鈉鹽(Poly(4-styrenesulfonic acid-comaleic acid) sodium salt, PSSMA)修飾Fe3O4使其表面具有高界面電位,最後將Fe3O4磁性奈米粒子回溶於水中形成磁流體。所合成出的磁流體可藉由外加磁場使溶液中的Fe3O4磁性奈米粒子形成有序的鏈狀結構,粒子間磁性吸引力和表層電荷的靜電排斥力之間的平衡決定了粒子間距,造成入射光於Fe3O4磁性奈米粒子的有序的鏈狀結構間產生布拉格繞射(Bragg scattering)的現象。我們藉由控制外加磁場大小改變溶液中Fe3O4磁性奈米粒子的間距,進而影響反射光之波長,達到變色之效果。我們通過研究Fe3O4粒子的尺寸分佈和濃度來優化其繞射強度和磁控調色的範圍。此外我們更進一步將其注入自製玻璃載具中探討其在小範圍空間中的磁控變色效果。Fe3O4磁性奈米粒子所構成的磁控變色磁流體具有快速且可逆的磁響應特性,因此未來其在光電子器件、傳感器和彩色顯示器等領域有相當大的應用潛力。

Magnetism is not easily shielded and able to apply an external stimulus in a non-contact method to cause a rapid and reversible response.These two characteristics make the magnetically responsive material unique in its application. In this study, we synthesized Fe3O4 magnetic nanoparticles and modified Fe3O4 with Poly(4-styrenesulfonic acid-comaleic acid) sodium salt (PSSMA) to have a high zeta-potential on the surface. Finally ,we dissolved Fe3O4 magnetic nanoparticles with water to make it become magnetic fluids. The magnetic fluid can form an ordered chain structure by an external magnetic field. The balance between the magnetic attraction between particles and the electrostatic repulsion force of the surface charge determines the particle spacing, resulting in the incident light produces a Bragg scattering phenomenon between the ordered chains of Fe3O4 magnetic nanoparticles. By controlling the size of the applied magnetic field, the spacing of Fe3O4 magnetic nanoparticles in the solution is changed, and the wavelength of the reflected light is then influenced to achieve the effect of discoloration. We studied the size distribution and concentration of Fe3O4 particles to optimize the range of diffraction intensity and magnetron toning. The magnetic fluid composed of Fe3O4 magnetic nanoparticles can be a rapid and reversible magnetic response, so in the future it has potential applications in optoelectronic devices, sensors and color displays.
URI: http://hdl.handle.net/11455/97982
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-30起公開。
Appears in Collections:物理學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105054035-1.pdf3.39 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.