Please use this identifier to cite or link to this item:
標題: 梅精複方對高脂/膽固醇飲食誘導倉鼠高血脂之降血脂作用與分子機制探討
Hypolipidemic effects and molecular mechanisms of Mei-Gin formula in high fat/cholesterol diet-induced hyperlipidemia hamsters
作者: 鍾千慧
Qian-Hui Zhong
關鍵字: 梅精複方;降血脂;高脂/膽固醇飲食;倉鼠;Mei-Gin formula;Hypolipidemia;High fat/cholesterol diet;Hamster
引用: 衛生福利部國民健康署—2005-2008 國民營養狀況變遷調查 衛生福利部國民健康署—健康久久網站 衛生福利部統計處-105年死因統計 中華民國血脂及動脈硬化學會—2017 台灣高風險病人血脂異常臨床治療指引 洪文傑 (2005) 梅精之加工探討及對倉鼠血脂之影響,國立中興大學食品科學系碩士論文。 張維棠 (2011) 以細胞及動物模式探討黑蒜頭對脂質生成之影響及其分子機制,中山醫學大學營養學系碩士論文。 李欣怡 (2016) 仙草萃取物對高脂飲食誘導肥胖大鼠之抗肥胖作用與分子機制探討,中山醫學大學營養學系碩士論文。 Akiyma, T., Tachibana, I., Shiorhara, H., Watanabe, N., Otsuki, M. High-fat hypercaloric diet induces obesity, glucose intolerance and hyperlipidemia in normal adult male Wistar rat. Diabetes Res. Clin. Pract 1996. 31:27-35. Andrade, S.; Borges, N., Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J Dairy Res 2009, 76, 469-474. Abreu, M. T.; Peek, R. M., Jr., Gastrointestinal malignancy and the microbiome. Gastroenterology 2014, 146, 1534-1546 e1533. Altinbas, A.; Sowa, J. P.; Hasenberg, T.; Canbay, A., The diagnosis and treatment of non-alcoholic fatty liver disease. Minerva Gastroenterol Dietol 2015, 61, 159-169. Amarowicz, R.; Pegg, R. B., The Potential Protective Effects of Phenolic Compounds against Low-density Lipoprotein Oxidation. Curr Pharm Des 2017, 23, 2754-2766. Affane, F.; Louala, S.; El Imane Harrat, N.; Bensalah, F.; Chekkal, H.; Allaoui, A.; Lamri-Senhadji, M., Hypolipidemic, antioxidant and antiatherogenic property of sardine by-products proteins in high-fat diet induced obese rats. Life Sci 2018. Al-Dayyat, H. M.; Rayyan, Y. M.; Tayyem, R. F., Non-alcoholic fatty liver disease and associated dietary and lifestyle risk factors. Diabetes Metab Syndr 2018. Azad, M. A. K.; Sarker, M.; Li, T.; Yin, J., Probiotic Species in the Modulation of Gut Microbiota: An Overview. Biomed Res Int 2018, 2018, 9478630. Backhed, F.; Ding, H.; Wang, T.; Hooper, L. V.; Koh, G. Y.; Nagy, A.; Semenkovich, C. F.; Gordon, J. I. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004, 101, 15718-15723. Baturina, O.; Mironova, O. Clinical case of hyperlipidemia type IV in a man with diabetes, myocardial infarction and stroke. Atherosclerosis 2017, 263, e227-e228. Bibbo, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G., The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci 2016, 20, 4742-4749. Bahadoran, Z.; Mirmiran, P.; Momenan, A. A.; Azizi, F., Allium vegetable intakes and the incidence of cardiovascular disease, hypertension, chronic kidney disease, and type 2 diabetes in adults: a longitudinal follow-up study. J Hypertens 2017, 35, 1909-1916. Blaut, M., Gut microbiota and energy balance: role in obesity. Proc Nutr Soc 2015, 74, 227-234. Brites, F.; Zago, V.; Verona, J.; Muzzio, M. L.; Wikinski, R.; Schreier, L. HDL capacity to inhibit LDL oxidation in well-trained triathletes. Life Sci 2006, 78, 3074-3081. Borlinghaus, J.; Albrecht, F.; Gruhlke, M. C.; Nwachukwu, I. D.; Slusarenko, A. J., Allicin: chemistry and biological properties. Molecules 2014, 19, 12591-12618. Bruce, C.R., Febbraio, M.A. PKR is not obligatory for high-fat diet-induced obesity and its associcated metabolic and inflammatory complications. Nat. Commun 2016. 7:10626. Chang, W.T., Shiau, D.K., Cheng, M.C., Tseng, C.Y., Chen, C.S., Wu, M.F., Hsu, C.L. Black garlic ameliorates obesity induced by a high-fat diet in rats. J Food Nutr Res 2017. 5: 736-741. Chang, Y.Y., Chou, C.H. Chiu, C.H. Yang, K.T. Lin, Y.L. Weng, W.L. Chen, Y.C. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. J Agric Food Chem 2011, 59:450-457. Chen, I.S., Chang, Y.Y., Hsu, C.L., Lin, H.W., Chang, M.H., Chen, J.W., Chen, S.S., Chen, Y.C. Alleviative effects of deep-seawater drinking water on hepatic lipid accumulation and oxidation induced by a high-fat diet. J Chin Med Assoc 2013, 76:95-101. Chen, Y.C., Kao, T.H., Tesng, C.Y., Chang, W.T., Hsu, C.L. Methanolic extract of black garlic ameliorates diet-induced obesity via regulating adipogenesis, adipokine biosynthesis, and lipolysis. J. Funct. Food 2014, 26:418-427. Chen, H.; Miao, H.; Feng, Y. L.; Zhao, Y. Y.; Lin, R. C. Metabolomics in dyslipidemia. Adv Clin Chem 2014, 66, 101-119. Chen, G.; Wang, H.; Zhang, X.; Yang, S. T., Nutraceuticals and functional foods in the management of hyperlipidemia. Crit Rev Food Sci Nutr 2014, 54, 1180-1201. Choi, S.K., Seo, J.S. Lycopene supplementation suppresses oxidative stress induced by a high fat diet in gerbils. Nutr. Res. Pract 2013, 7:26-33. Castro-Torres, I. G.; De la, O. A. M.; Naranjo-Rodriguez, E. B.; Castro-Torres, V. A.; Dominguez-Ortiz, M. A.; Martinez-Vazquez, M., The Hypocholesterolemic Effects of Eryngium carlinae F. Delaroche Are Mediated by the Involvement of the Intestinal Transporters ABCG5 and ABCG8. Evid Based Complement Alternat Med 2017, 2017, 3176232. Calabresi, L.; Gomaraschi, M.; Simonelli, S.; Bernini, F.; Franceschini, G., HDL and atherosclerosis: Insights from inherited HDL disorders. Biochim Biophys Acta 2015, 1851, 13-18. Choi, S. W.; Hur, N. Y.; Ahn, S. C.; Kim, D. S.; Lee, J. K.; Kim, D. O.; Park, S. K.; Kim, B. Y.; Baik, M. Y., Isolation and structural determination of squalene synthase inhibitor from Prunus mume fruit. J Microbiol Biotechnol 2007, 17, 1970-1975. Chen, G.; Wang, H.; Zhang, X.; Yang, S. T., Nutraceuticals and functional foods in the management of hyperlipidemia. Crit Rev Food Sci Nutr 2014, 54, 1180-1201. Ceska, R.; Vrablik, M.; Sucharda, P., [Dyslipidemia and obesity 2011. Similarities and differences]. Vnitr Lek 2011, 57, 248-253. Choi, I. S.; Cha, H. S.; Lee, Y. S. Physicochemical and antioxidant properties of black garlic. Molecules 2014, 19, 16811-16823. Cohen, D. E. Balancing cholesterol synthesis and absorption in the gastrointestinal tract. J Clin Lipidol 2008, 2, S1-3. Du, H.; Zhao, X.; You, J. S.; Park, J. Y.; Kim, S. H.; Chang, K. J. Antioxidant and hepatic protective effects of lotus root hot water extract with taurine supplementation in rats fed a high fat diet. J Biomed Sci 2010, 17 Suppl 1, S39. Du, X. M.; Kim, M. J.; Hou, L.; Le Goff, W.; Chapman, M. J.; Van Eck, M.; Curtiss, L. K.; Burnett, J. R.; Cartland, S. P.; Quinn, C. M.; Kockx, M.; Kontush, A.; Rye, K. A.; Kritharides, L.; Jessup, W., HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ Res 2015, 116, 1133-1142. Daniel, H.; Gholami, A. M.; Berry, D.; Desmarchelier, C.; Hahne, H.; Loh, G.; Mondot, S.; Lepage, P.; Rothballer, M.; Walker, A.; Bohm, C.; Wenning, M.; Wagner, M.; Blaut, M.; Schmitt-Kopplin, P.; Kuster, B.; Haller, D.; Clavel, T. High-fat diet alters gut microbiota physiology in mice. ISME J 2014, 8, 295-308. Del Chierico, F.; Abbatini, F.; Russo, A.; Quagliariello, A.; Reddel, S.; Capoccia, D.; Caccamo, R.; Ginanni Corradini, S.; Nobili, V.; De Peppo, F.; Dallapiccola, B.; Leonetti, F.; Silecchia, G.; Putignani, L., Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential Patterns. Front Microbiol 2018, 9, 1210. Do, M. H.; Lee, E.; Oh, M. J.; Kim, Y.; Park, H. Y., High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients 2018, 10. Fang, S.C., Hsu, C.L., Yen, G.C. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. J. Agric. Food Chem 2008, 56:4463-4468. Farias, S.J., Suruagy, A.M., Lima, O.S., Porto. B.J., Rego, C.C., Sofia, M.I., Bezerra, B.N., Duare, F.J., Goulart, S.A., Rocha, A.T. Dietary intake of ain-93 standard diet induces Fatty liver with altered hepatic fatty acid profile in Wistar rats. Nutr. Hosp 2015, 31:2140-2146. Girousse, A., Langin, D. Adipocyte lipases and lipid droplet-associated proteins: insight from transgenic mouse models. Int. J. Obes. (Lond) 2012, 36: 581-594. Grigor'eva, I. N.; Maliutina, S. K.; Voevoda, M. I. [Role of hyperlipidemia in cholelithiasis]. Eksp Klin Gastroenterol 2010, 64-68. Guo, F.; Huang, C.; Liao, X.; Wang, Y.; He, Y.; Feng, R.; Li, Y.; Sun, C., Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Mol Nutr Food Res 2011, 55, 1809-1818. Ha, A.W., Ying, T., Kim, W.K. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Nutr. Res. Pract 2015, 9: 30-36. Hirai, S., Yamanaka, M., Kawachi, H., Matsui, T., Yano, H. Activin a inhibits differentiation of 3T3-L1 preadipocyte. Mol Cell Endocrinol 2005, 232: 21-26. He, K.; Hu, Y.; Ma, H.; Zou, Z.; Xiao, Y.; Yang, Y.; Feng, M.; Li, X.; Ye, X., Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta 2016, 1862, 1696-1709. Hsu, C.L., Lin, Y.J., Ho, C.T., Yen, G.C. Inhibitory effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells. Food Funct 2012, 3:49-57. Hsu, C.L., Wu, C.H., Huang, S.L., Yen, G.C. Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. J. Agric. Food Chem 2009, 57:425-431. Hsu, C.L., Yen, G.C. Induction of cell apoptosis in 3T3-L1 pre-adipocytes by flavonoids is associated with their antioxidant activity. Mol. Nutr. Food Res 2006, 50:1072-1079. Hsu, C.L., Yen, G.C. Effect of gallic acid on high fat diet-induced dyslipidemia, hepatosteatosis, and oxidative stress in rats. Br. J. Nutr 2007, 98: 727-735. Hsu, C.L., Yen, G.C. Phenolic compounds: Evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol. Nutr. Food Res 2008, 52:53-61. Harris, C. A.; Haas, J. T.; Streeper, R. S.; Stone, S. J.; Kumari, M.; Yang, K.; Han, X.; Brownell, N.; Gross, R. W.; Zechner, R.; Farese, R. V., Jr., DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res 2011, 52, 657-667. Huang, G.J., Liao, J.C., Huang, S.S., Lin, T.H., Deng, J.S. Anti-inflammatory activites of aqueous extract of mesona procumbens in experimental mice. Food Agric 2011, 92:1186-1193. Hung, C.Y., Yen, G.C. Extraction and identification of antioxidative components of Hsian-tsao (Mesona procumbens Hemsl.). LWT-Food Sci. Tech 2001, 34:306-311. Hung, C.Y., Yen, G.C. Antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl. J. Agric. Food Chem 2002, 50:2993-2997. Hussain, M. M., Intestinal lipid absorption and lipoprotein formation. Curr Opin Lipidol 2014, 25, 200-2006. Hariri, N.; Thibault, L. High-fat diet-induced obesity in animal models. Nutr Res Rev 2010, 23, 270-299. Hyder, M.A., Hasan, M., Mohieldein, A.H. Comparative Levels of ALT, AST, ALP and GGT in Liver associated Diseases. J. Exp. Biol 2013, 3:280-284. Higashihara, M. [Amplification and inhibition of platelet function by serum lipoproteins]. Nihon Rinsho 1992, 50, 282-286. Huang, W. C.; Chen, Y. M.; Kan, N. W.; Ho, C. S.; Wei, L.; Chan, C. H.; Huang, H. Y.; Huang, C. C., Hypolipidemic effects and safety of Lactobacillus reuteri 263 in a hamster model of hyperlipidemia. Nutrients 2015, 7, 3767-3782. Huang, H.; Xie, Z.; Yokoyama, W.; Yu, L.; Wang, T. T., Identification of liver CYP51 as a gene responsive to circulating cholesterol in a hamster model. J Nutr Sci 2016, 5, e16. Huang, J.; Feng, S.; Liu, A.; Dai, Z.; Wang, H.; Reuhl, K.; Lu, W.; Yang, C. S., Green Tea Polyphenol EGCG Alleviates Metabolic Abnormality and Fatty Liver by Decreasing Bile Acid and Lipid Absorption in Mice. Mol Nutr Food Res 2018, 62. Iwasa, T.; Matsuzaki, T.; Yano, K.; Irahara, M., The effects of ovariectomy and lifelong high-fat diet consumption on body weight, appetite, and lifespan in female rats. Horm Behav 2018, 97, 25-30. Jia, X.; Ebine, N.; Demonty, I.; Wang, Y.; Beech, R.; Muise, V.; Fortin, M. G.; Jones, P. J., Hypocholesterolaemic effects of plant sterol analogues are independent of ABCG5 and ABCG8 transporter expressions in hamsters. Br J Nutr 2007, 98, 550-555. Jiang, Y.; Fu, C.; Liu, G.; Guo, J.; Su, Z., Cholesterol-lowering effects and potential mechanisms of chitooligosaccharide capsules in hyperlipidemic rats. Food Nutr Res 2018, 62. Jeong, J.T., Moon, J.H., Park, K.H., Shin, C.S. Isolation and characterization of a new compound from Prunus mume fruit that inhibits cancer cells. J. Agric. Food Chem 2006, 54:2123-2128. Jia, L.; Li, D.; Feng, N.; Shamoon, M.; Sun, Z.; Ding, L.; Zhang, H.; Chen, W.; Sun, J.; Chen, Y. Q., Anti-diabetic Effects of Clostridium butyricum CGMCC0313.1 through Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice. Sci Rep 2017, 7, 7046. Jeong, Y.Y., Ryu, J.H., Shin, J.H., Kang, M.J., Kang, J.R., Han, J., Kang, D. Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules 2016, 21:430. Jiang, T.; Gao, X.; Wu, C.; Tian, F.; Lei, Q.; Bi, J.; Xie, B.; Wang, H. Y.; Chen, S.; Wang, X. Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients 2016, 8, 126. Jung, Y. M.; Lee, S. H.; Lee, D. S.; You, M. J.; Chung, I. K.; Cheon, W. H.; Kwon, Y. S.; Lee, Y. J.; Ku, S. K., Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutr Res 2011, 31, 387-396. Jakobsdottir, G., Xu, J., Molin, G., Ahrne, S., Nyman, M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 2013, 8, e80476. Jhang, J. J.; Ong, J. W.; Lu, C. C.; Hsu, C. L.; Lin, J. H.; Liao, J. W.; Yen, G. C., Hypouricemic effects of Mesona procumbens Hemsl. through modulating xanthine oxidase activity in vitro and in vivo. Food Funct 2016, 7, 4239-4246. Kahn, S.E., Hull, R.L., Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444:840-846. Kim, J.S., Kang, O.J., Gweon, O.C. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. Changwon 2012 631-701. Kim, M. S.; Bae, J. W., Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ Microbiol 2016, 18, 1498-1510. Kountouras, J.; Polyzos, S. A.; Doulberis, M.; Zeglinas, C.; Artemaki, F.; Vardaka, E.; Deretzi, G.; Giartza-Taxidou, E.; Tzivras, D.; Vlachaki, E.; Kazakos, E.; Katsinelos, P.; Mantzoros, C. S., Potential impact of Helicobacter pylori-related metabolic syndrome on upper and lower gastrointestinal tract oncogenesis. Metabolism 2018. Kim, M.H., Kim, M.J., Lee, J.H., Han, J.I., Kim, J.H., Sok, D.E., Kim, M.R. Hepatoprotective effect of aged black garlic on chronic alcohol-induced liver injury in rats. J. Med. Food 2011, 14:732-738. Kolovou, G.D., Anagnostopoulou, K.K., Cokkinos, D.V. Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad Med J 2005, 81:358-366. Kannar, D.; Wattanapenpaiboon, N.; Savige, G. S.; Wahlqvist, M. L., Hypocholesterolemic effect of an enteric-coated garlic supplement. J Am Coll Nutr 2001, 20, 225-231. Krahmer, N., Farese, R., Walther, T. Balancing the fat: lipid droplets and human disease. EMBO Molecular Medicine 2013, 5:973-983. Kumari, S.; Deori, M.; Elancheran, R.; Kotoky, J.; Devi, R., In vitro and In vivo Antioxidant, Anti-hyperlipidemic Properties and Chemical Characterization of Centella asiatica (L.) Extract. Front Pharmacol 2016, 7, 400. Li, N.; Li, M.; Hong, W.; Shao, J.; Xu, H.; Shimano, H.; Lu, J.; Xu, Y., Brg1 regulates pro-lipogenic transcription by modulating SREBP activity in hepatocytes. Biochim Biophys Acta 2018. Lee, E.; Jung, S. R.; Lee, S. Y.; Lee, N. K.; Paik, H. D.; Lim, S. I., Lactobacillus plantarum Strain Ln4 Attenuates Diet-Induced Obesity, Insulin Resistance, and Changes in Hepatic mRNA Levels Associated with Glucose and Lipid Metabolism. Nutrients 2018, 10. Lancaster, G.I., Kammoun, H.L., Kraakman, M.J., Kowalski, G.M., Lee, M.W., Kwon J.E., Lee Y.J., Jeong, Y.J., Kim, I., Cho, Y.M., Kim, Y.M. Kang, S.C. Pruns mume leaf extract lowers blood glucose level in diabetic mice. Pharmaceutical Biology 2016. ISSN:1388-0209 Liao, C. C.; Ou, T. T.; Wu, C. H.; Wang, C. J., Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J Agric Food Chem 2013, 61, 11082-11088. Li, G. S.; Liu, X. H.; Zhu, H.; Huang, L.; Liu, Y. L.; Ma, C. M.; Qin, C., Berberine-improved visceral white adipose tissue insulin resistance associated with altered sterol regulatory element-binding proteins, liver x receptors, and peroxisome proliferator-activated receptors transcriptional programs in diabetic hamsters. Biol Pharm Bull 2011, 34, 644-654. Lahti, L.; Salonen, A.; Kekkonen, R. A.; Salojarvi, J.; Jalanka-Tuovinen, J.; Palva, A.; Oresic, M.; de Vos, W. M., Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. PeerJ 2013, 1, e32. Lala, V.; Minter, D. A., 2018. Liver Function Tests, StatPearls, Treasure Island (FL), pp. Lee, S. W.; Lee, T. Y.; Yang, S. S.; Tung, C. F.; Yeh, H. Z.; Chang, C. S., Risk factors and metabolic abnormality of patients with non-alcoholic fatty liver disease: Either non-obese or obese Chinese population. Hepatobiliary Pancreat Dis Int 2018, 17, 45-48. Liu, L., Gao, C., Yao, P., Gong, Z. Quercetin Alleviates High-Fat Diet-Induced Oxidized Low-Density Lipoprotein Accumulation in the Liver: Implication for Autophagy Regulation. Biomed Res Int 2015, 2015, 607531. Liu, C.; Liu, Q.; Jiang, B., [Acid and bile tolerance and cholesterol reduction ability of Lactobacillus paraplantarum]. Wei Sheng Wu Xue Bao 2009, 49, 1176-1179. Lye, H. S.; Rusul, G.; Liong, M. T., Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci 2010, 93, 1383-1392. Liu, X.; Li, G.; Zhu, H.; Huang, L.; Liu, Y.; Ma, C.; Qin, C., Beneficial effect of berberine on hepatic insulin resistance in diabetic hamsters possibly involves in SREBPs, LXRalpha and PPARalpha transcriptional programs. Endocr J 2010, 57, 881-893. Liu, L.; Liu, L.; Lu, B.; Xia, D.; Zhang, Y., Evaluation of antihypertensive and antihyperlipidemic effects of bamboo shoot angiotensin converting enzyme inhibitory peptide in vivo. J Agric Food Chem 2012, 60, 11351-11358. Liu, F.; Ling, Z.; Xiao, Y.; Yang, Q.; Wang, B.; Zheng, L.; Jiang, P.; Li, L.; Wang, W., Alterations of Urinary Microbiota in Type 2 Diabetes Mellitus with Hypertension and/or Hyperlipidemia. Front Physiol 2017, 8, 126. Lu, Y.; He, Z.; Shen, X.; Xu, X.; Fan, J.; Wu, S.; Zhang, D., Cholesterol-lowering effect of allicin on hypercholesterolemic ICR mice. Oxid Med Cell Longev 2012, 2012, 489690. Liao, C. C.; Ou, T. T.; Wu, C. H.; Wang, C. J., Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J Agric Food Chem 2013, 61, 11082-11088. Moczulski, D.; Majak, I.; Mamczur, D., An overview of beta-oxidation disorders. Postepy Hig Med Dosw (Online) 2009, 63, 266-277. Mitani, T.; Horinishi, A.; Kishida, K.; Kawabata, T.; Yano, F.; Mimura, H.; Inaba, N.; Yamanishi, H.; Oe, T.; Negoro, K.; Mori, H.; Miyake, Y.; Hosoda, A.; Tanaka, Y.; Mori, M.; Ozaki, Y., Phenolics profile of mume, Japanese apricot (Prunus mume Sieb. et Zucc.) fruit. Biosci Biotechnol Biochem 2013, 77, 1623-1627. Martinez-Casas, L.; Lage-Yusty, M.; Lopez-Hernandez, J., Changes in the Aromatic Profile, Sugars, and Bioactive Compounds When Purple Garlic Is Transformed into Black Garlic. J Agric Food Chem 2017, 65, 10804-10811. Martin, K. A.; Mani, M. V.; Mani, A., New targets to treat obesity and the metabolic syndrome. Eur J Pharmacol 2015, 763, 64-74. Mahley, R. W.; Innerarity, T. L.; Rall, S. C., Jr.; Weisgraber, K. H., Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res 1984, 25, 1277-1294. Mohammadi, A.; Oshaghi, E. A., Effect of garlic on lipid profile and expression of LXR alpha in intestine and liver of hypercholesterolemic mice. J Diabetes Metab Disord 2014, 13, 20. Mitani, T.; Ota, K.; Inaba, N.; Kishida, K.; Koyama, H. A., Antimicrobial Activity of the Phenolic Compounds of Prunus mume against Enterobacteria. Biol Pharm Bull 2018, 41, 208-212. Maciejewska, D.; Skonieczna-Zydecka, K.; Lukomska, A.; Gutowska, I.; Dec, K.; Kupnicka, P.; Palma, J.; Pilutin, A.; Marlicz, W.; Stachowska, E., The short chain fatty acids and lipopolysaccharides status in Sprague-Dawley rats fed with high-fat and high-cholesterol diet. J Physiol Pharmacol 2018, 69. Nelson, R. H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 2013, 40, 195-211. Navar-Boggan, A. M.; Peterson, E. D.; D'Agostino, R. B., Sr.; Neely, B.; Sniderman, A. D.; Pencina, M. J. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 2015, 131, 451-458. Nehra, V.; Allen, J. M.; Mailing, L. J.; Kashyap, P. C.; Woods, J. A. Gut Microbiota: Modulation of Host Physiology in Obesity. Physiology (Bethesda) 2016, 31, 327-335. Ortiz-Meoz, R. F.; Green, R., Functional elucidation of a key contact between tRNA and the large ribosomal subunit rRNA during decoding. RNA 2010, 16, 2002-2013. Pocathikorn, A.; Taylor, R. R.; Mamotte, C. D. Atorvastatin increases expression of low-density lipoprotein receptor mRNA in human circulating mononuclear cells. Clin Exp Pharmacol Physiol 2010, 37, 471-476. Park, Y. H.; Kim, J. G.; Shin, Y. W.; Kim, S. H.; Whang, K. Y., Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J Microbiol Biotechnol 2007, 17, 655-662. Pindjakova, J.; Sartini, C.; Lo Re, O.; Rappa, F.; Coupe, B.; Lelouvier, B.; Pazienza, V.; Vinciguerra, M., Gut Dysbiosis and Adaptive Immune Response in Diet-induced Obesity vs. Systemic Inflammation. Front Microbiol 2017, 8, 1157. Pang, M.; Fang, Y.; Chen, S.; Zhu, X.; Shan, C.; Su, J.; Yu, J.; Li, B.; Yang, Y.; Chen, B.; Liang, K.; Hu, H.; Lv, G., Gypenosides Inhibits Xanthine Oxidoreductase and Ameliorates Urate Excretion in Hyperuricemic Rats Induced by High Cholesterol and High Fat Food (Lipid Emulsion). Med Sci Monit 2017, 23, 1129-1140. Ramakrishna, R.; Kumar, D.; Bhateria, M.; Gaikwad, A. N.; Bhatta, R. S. 16-Dehydropregnenolone lowers serum cholesterol by up-regulation of CYP7A1 in hyperlipidemic male hamsters. J Steroid Biochem Mol Biol 2017, 168, 110-117. Reagan-Shaw, S., Nihal, M., Ahmad, N. Dose translation from animal to human studies revisited. The FASEB Journal 2008, 22, 659-661. Sibouakaz, D.; Othmani-Mecif, K.; Fernane, A.; Taghlit, A.; Benazzoug, Y., Biochemical and Ultrastructural Cardiac Changes Induced by High-Fat Diet in Female and Male Prepubertal Rabbits. Anal Cell Pathol (Amst) 2018, 2018, 6430696. Sohn, C. W.; Kim, H.; You, B. R.; Kim, M. J.; Kim, H. J.; Lee, J. Y.; Sok, D. E.; Kim, J. H.; Lee, K. J.; Kim, M. R., High temperature- and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets. J Med Food 2012, 15, 435-440. Suri, B. S.; Targ, M. E.; Robinson, D. S., The metabolic conversion of very-low-density lipoprotein into low-density lipoprotein by the extrahepatic tissues of the rat. Biochem J 1979, 178, 455-466. Song, W.; Wang, Z.; Zhang, X.; Li, Y., Ethanol Extract from Ulva prolifera Prevents High-Fat Diet-Induced Insulin Resistance, Oxidative Stress, and Inflammation Response in Mice. Biomed Res Int 2018, 2018, 1374565. Seyedan, A.; Alshawsh, M. A.; Alshagga, M. A.; Mohamed, Z., Antiobesity and Lipid Lowering Effects of Orthosiphon stamineus in High-Fat Diet-Induced Obese Mice. Planta Med 2017, 83, 684-692. Saadeh, S. Nonalcoholic fatty liver disease and obesity. Nutr. Clin. Pract 2007, 22:1-10. Sheela, C. G.; Augusti, K. T., Effects of S-allyl cysteine sulfoxide isolated from Allium sativum Linn and gugulipid on some enzymes and fecal excretions of bile acids and sterols in cholesterol fed rats. Indian J Exp Biol 1995, 33, 749-751. Shin, E.J., Hur, H.J., Sung, M.J., Park, J.H., Yang, H.J., Kim, M.S., Kwon, D.Y., Hwang, J.T. Ethanol extract of the Prunus mume fruits stimulates glucose uptake by regulating PPAR-γ in C2C12 myotubes and ameliorates glucose intolerance and fat accumulation in mice fed a high-fat diet. Food Chem 2013, 141:4115-4121. Shyu, M.H., Kao, T.C., Yen, G.C. Hsian-taso (Mesona procumbens Heml.) prevents against rat liver fibrosis induced by CCl(4) via inhibition of hepatic stellate cells activation. Food Chem. Toxicol 2008, 46:3707-3713. Stevenson, D.G., Eller, F.J., Wang, L.W., Jane, J.L., Wang, T. Oil and Tocopherol Content and Composition of Pumpkin Seed Oil in 12 Cultivars. J Agric Food Chem 2007, 55:4005-4013. Shang, Y.; Khafipour, E.; Derakhshani, H.; Sarna, L. K.; Woo, C. W.; Siow, Y. L.; O, K. Short Term High Fat Diet Induces Obesity-Enhancing Changes in Mouse Gut Microbiota That are Partially Reversed by Cessation of the High Fat Diet. Lipids 2017, 52, 499-511. Shimonov, M.; Leibou, L.; Davidov, E.; Bernadsky, O.; Wainstein, J.; Leibovitz, E., Effects of Helicobacter Pylori Colonization/Infection on the Metabolic Profile of Obese Persons Undergoing Sleeve Gastrectomy Surgery for Weight Reduction. Isr Med Assoc J 2016, 18, 401-403. Sun, Y.; Fu, D.; Wang, Y. K.; Liu, M.; Liu, X. D., Prevalence of Helicobacter pylori infection and its association with lipid profiles. Bratisl Lek Listy 2016, 117, 521-524. Tran, G. B.; Dam, S. M.; Le, N. T., Amelioration of Single Clove Black Garlic Aqueous Extract on Dyslipidemia and Hepatitis in Chronic Carbon Tetrachloride Intoxicated Swiss Albino Mice. Int J Hepatol 2018, 2018, 9383950. Toita, R.; Kawano, T.; Fujita, S.; Murata, M.; Kang, J. H., Increased hepatic inflammation in a normal-weight mouse after long-term high-fat diet feeding. J Toxicol Pathol 2018, 31, 43-47. Ulla, A. Alam, M.A., Sikder, B. Sumi, F.A., Rahman, M.M., Habib, Z.F., Mohammed, M.K., Subhan, N., Hossain, H., Reza, H.M. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats. BMC Complement Altern Med 2017, 17:289. Usui, T. Pharmaceutical prospects of phytoestrogens. Endocr J 2006, 53, 7-20. Utsunomiya H, Yamakawa T, Kamei J, Kadonosono K, Tanaka S-I. Anti-hyperglycemic effects of plum in a rat model of obesity and type 2 diabetes, Wistar fatty rat. Biomed Res 2005, 26:193-200. Utsunomiya, H., Takekoshi, S., Gato, N., Utatsu, H., Motley, E.D., Eguchi, K., Fitzgerald, T.G., Mifune, M., Frank, G.D., Eguchi, S. Fruit-juice concentrate of Asian plum inhibits growth signals of vascular smooth muscle cells induced by angiotensin II. Life Sci 2002, 72:659-667. Van Gaal, L.F., Mertens, I.L., De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444:875-880. Vucenik, I., Stains, J.P. Obesity and cancer risk: evidence, mechanisms, and recommendations. Annals of the New York Academy of Sciences 2012, 1271:37-43. Villanueva-Millan, M. J.; Perez-Matute, P.; Oteo, J. A., Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem 2015, 71, 509-525. Wang, Y.; Viscarra, J.; Kim, S. J.; Sul, H. S., Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol 2015, 16, 678-689. Wang, K. Y.; Hsu, K. C.; Liu, W. C.; Yang, K. C.; Chen, L. W., Relationship Between Xanthelasma Palpebrarum and Hyperlipidemia. Ann Plast Surg 2018, 80, S84-S86. Wei, S. M.; Ren, W. H.; Wang, Z. Y. Effects of LDL and HDL on morphology of and prostacyclin synthesis in cultured vascular endothelial cells. J Tongji Med Univ 1987, 7, 123-129, 107. Wang, Y.W., Jones, P.J. Conjugated linoleic acid and obesity control: efficacy and mechanism. Int. J. Oves. Relat. Metab. Disord 2004, 28:941-955. Wang. X., Jiao, F., Wang, Q.W., Wang, J., Yang, K., Hu, R.R., Liu, H.C., Wang, H.Y., Wang, Y.S. Aged black garlic extract induces inhibition of gastric cancer cell growth in vitro and in vivo. Molecular medicine reports 2012, 5:66-72. Wang, J. C.; Bennett, M., Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 2012, 111, 245-259. Wang, L.; Zeng, B.; Liu, Z.; Liao, Z.; Zhong, Q.; Gu, L.; Wei, H.; Fang, X., Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High-Fat Diet Treated HFA Mice. J Food Sci 2018, 83, 864-873. Wan, C. W.; Wong, C. N.; Pin, W. K.; Wong, M. H.; Kwok, C. Y.; Chan, R. Y.; Yu, P. H.; Chan, S. W., Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-alpha in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother Res 2013, 27, 545-551. Xiao, P.G., Li, D.P., Yang, S.L. Modern Chinese materia medica (pp. 162-165) 2002. Beijing, China:Chemical Industry Press, (Volume 2). Xie, B.; Liu, A.; Zhan, X.; Ye, X.; Wei, J. Alteration of gut bacteria and metabolomes after glucaro-1,4-lactone treatment contributes to the prevention of hypercholesterolemia. J Agric Food Chem 2014, 62, 7444-7451. Xie, W.; Zhang, S.; Lei, F.; Ouyang, X.; Du, L., Ananas comosus L. Leaf Phenols and p-Coumaric Acid Regulate Liver Fat Metabolism by Upregulating CPT-1 Expression. Evid Based Complement Alternat Med 2014, 2014, 903258. Yeh, C. T.; Huang, W. H.; Yen, G. C., Antihypertensive effects of Hsian-tsao and its active compound in spontaneously hypertensive rats. J Nutr Biochem 2009, 20, 866-875. Yan, X.T., Lee, S.H., Li, W., Sun, Y.N., Yang S.Y., Jang H.D., Kim Y.H. Evaluation of the antioxidant and anti-osteoporosis activities of chemical constituents of the fruits of Prunus mume. Food Chem 2014, 156:408-415. Yang, D.J., Chang, Y.Y., Hsu, C.L., Liu, C.W., Lin, Y.L., Lin, Y.H., Liu, K.C., Chen, Y.C. Antiobesity and hypolipidemic effects of polyphenol-rich longan (Dimocarpus longans Lour.) flower water extract in hypercaloric-dietary rats. J. Agric. Food Chem 2010, 58:2020-2027. Yang, J.Y., Della-Fera, M.A., Rayalam, S., Ambai, S., Hartzell, D.L., Park, H.J., Baile, C.A. Enhanced inhibition of adopogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sciences 2008, 82:1032-1039. Yang, T. H.; Yao, H. T.; Chiang, M. T., Red algae (Gelidium amansii) hot-water extract ameliorates lipid metabolism in hamsters fed a high-fat diet. J Food Drug Anal 2017, 25, 931-938. Yang, S.F. Tseng, J.K. Chang, Y.Y. Chen, Y.C. Flaxseed oil attenuates nonalcoholic fatty liver of hyperlipidemic hamsters. J Agric Food Chem 2009, 57:5078-5083. Yang, M. Y.; Chan, K. C.; Lee, Y. J.; Chang, X. Z.; Wu, C. H.; Wang, C. J., Sechium edule Shoot Extracts and Active Components Improve Obesity and a Fatty Liver That Involved Reducing Hepatic Lipogenesis and Adipogenesis in High-Fat-Diet-Fed Rats. J Agric Food Chem 2015, 63, 4587-4596. Yao, Y., Li, X.B., Zhao, W., Zeng, Y.Y., Shen, H., Xiang, H., and Xiao, H. Anti-obesity effect of an isoflavone fatty acid ester on obese mice induced by high fat diet and its potential mechanism. Lipids Health Dis 2010, 9:49. Yen, G.C., Chen, Y.C., Chang, W.T., Hsu, C.L. Effects of polyphenolic compounds on tumor necrosis factor-a (TNF-α)-induced changes of adipokines and oxidative stress in 3T3-L1 adipocytes. J. Agric. Food Chem 2011, 59:546-551. Yoshikawa, M., Murakami, T., Ishiwada, T., Morikawa, T., Kagawa, M., Higashi, Y., Matsuda, H. New flavonol oligoglycosides and polyacylated sucroses with inhibitory effects on aldose reductase and platelet aggregation from the flowers of Prunus mume. J. Nat. Prod 2002, 65: 1151-1155. Yu, Y.S., Hsu, C.L., Yen, G.C. Anti-inflammatory effects of the roots of Alpinia pricei Hayata and its phenolic compounds. J. Agric. Food Chem 2009, 57:7673-7680. Zhang, X.; Wu, C.; Wu, H.; Sheng, L.; Su, Y.; Zhang, X.; Luan, H.; Sun, G.; Sun, X.; Tian, Y.; Ji, Y.; Guo, P.; Xu, X., Anti-hyperlipidemic effects and potential mechanisms of action of the caffeoylquinic acid-rich Pandanus tectorius fruit extract in hamsters fed a high fat-diet. PLoS One 2013, 8, e61922. Zheng, G., Qiu, Y., Zhang, Q.F., Li, D. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br J Nutr 2014, 112, 1034-1040. Zhuo, J.; Zeng, Q.; Cai, D.; Zeng, X.; Chen, Y.; Gan, H.; Huang, X.; Yao, N.; Huang, D.; Zhang, C. Evaluation of type 2 diabetic mellitus animal models via interactions between insulin and mitogenactivated protein kinase signaling pathways induced by a high fat and sugar diet and streptozotocin. Mol Med Rep 2018. Zhou, J.; Zhang, L.; Zhang, J.; Wan, X. Aqueous extract of post-fermented tea reverts the hepatic steatosis of hyperlipidemia rat by regulating the lipogenic genes expression and hepatic fatty acid composition. BMC Complement Altern Med 2014, 14, 263. Zheng, G.; Qiu, Y.; Zhang, Q. F.; Li, D., Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br J Nutr 2014, 112, 1034-1040. Zhao, Y.; Pan, Y.; Yang, Y.; Batey, R.; Wang, J.; Li, Y., Treatment of rats with Jiangzhi Capsule improves liquid fructose-induced fatty liver: modulation of hepatic expression of SREBP-1c and DGAT-2. J Transl Med 2015, 13, 174. Zhou, Y.; Ruan, Z.; Wen, Y.; Yang, Y.; Mi, S.; Zhou, L.; Wu, X.; Ding, S.; Deng, Z.; Wu, G.; Yin, Y., Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion. J Clin Biochem Nutr 2016, 58, 146-155. Zelcer, N.; Tontonoz, P., Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 2006, 116, 607-614. Zhao, Y.; Liu, J.; Hao, W.; Zhu, H.; Liang, N.; He, Z.; Ma, K. Y.; Chen, Z. Y., Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters. J Agric Food Chem 2017, 65, 10984-10992.
梅 (Prunus mume Sieb. et Zucc.) 為薔薇科之落葉喬木,在中國傳統醫藥中具鎮咳、祛痰、止吐和解熱之功效。已知其具有多種生理活性,包含抗肥胖、抗氧化、抗骨質疏鬆、降血糖、抗疲勞與抗癌等作用。梅精為梅果實之濃縮萃取物,但由於製程需長時間加熱會破壞機能性成分,進而降低其生理功效。因此,本研究將利用複方結合方式,以梅精為基底並外加不同比例之梅果、黑蒜和仙草萃取物,形成 7 種梅精複方。利用高脂/膽固醇飲食誘導倉鼠高血脂模式,進一步評估樣品之降血脂潛力。內容分為兩部分:(一) 以高脂/膽固醇飲食誘導倉鼠高血脂進行不同梅精複方之篩選 (動物預實驗);(二) 不同劑量梅精複方 4 對高脂/膽固醇飲食誘導倉鼠高血脂之改善效應 (動物主實驗)。在動物預實驗之結果得知,梅精複方 4 能降低血清三酸甘油酯、總膽固醇和 LDL-C 之含量,亦具有減少肝臟總脂質堆積並促進糞便膽固醇排出之效用。由此結果顯示,梅精複方 4 為最能有效改善高血脂之複方。在動物主實驗之結果得知,給予高血脂倉鼠梅精複方 4 (100 mg/kg b.w.) 後,可顯著降低血清中三酸甘油酯、總膽固醇及丙二醛含量。同時,亦能有效減少肝臟總脂質與三酸甘油酯堆積並促進糞便總脂質之排出。進一步探討高血脂倉鼠之肝臟組織基因表現,梅精複方 4 不僅可提升 LXR α、ABCG5、ABCA1 與 CYP51 表現,還能抑制 ACC、FAS、DGAT-2、HMG-CoA reductase、SREBP-1a 與 SREBP-1c 表現。此外,其可改善高血脂倉鼠之腸道菌群豐富度及多樣性,增加 Lactobacillus acidophilus、Bifidobacterium animalis 及減少 Helicobacter pylori 數量,並透過促進膽固醇代謝及抑制其合成,而可能具有改善高血脂之效果。綜合上述結果得知,梅精複方 4 具有改善高脂/膽固醇飲食誘導倉鼠血脂異常之功效,未來可進一步開發成為具有調節血脂質功效之健康食品。

Prunus mume Sieb. et Zucc. is the deciduous tree of the Rosaceae family. It has antitussive, expectorant, antiemetic, and antipyretic effects in Chinese traditional medicine. It provides many physiological activities, including anti-obesity, anti-oxidation, anti-osteoporosis, hypoglycemic, anti-fatigue, and anti-cancer. Mei-Gin is the concentrated extract of plum fruit. However, the functional components and physiological effects of the plum fruit are destroied during the long time heating process. Therefore, this research used Mei-Gin formulas which are based on Mei-Gin and added different proportions of plum fruit, black garlic, and Mesona procumbens Hemsl. extracts to prepare seven kinds of Mei-Gin formulas. High-fat/cholesterol diet was used to induce hamsters with hyperlipidemia and the potential on hypolipidemia of these formulas was evaluated. The content is divided into two parts: (i) An animal pretest to screen the most potential sample from different Mei-Gin formulas. (ii) An animal test to evaluate the hypolipidemic effect on different doses of Mei-Gin formula 4. The results of animal pretest showed that Mei-Gin formula 4 could decrease the concentration of serum triglyceride, total cholesterol, and LDL-C. Furthermore, it also reduced the accumulation of hepatic total lipid and promoted the excretion of fecal cholesterol. From these results, Mei-Gin formula 4 was the most effective formula on improving hyperlipidemia. The results of animal test showed that treatment by Mei-Gin formula 4 (100 mg/kg b.w.) could significantly reduce the concentration of serum triglyceride, total cholesterol, and malondialdehyde. Stimultaneously, it also decreased the amount of hepatic total lipid and triglyceride. Besides, it was able to increase the release of fecal total lipid. We explored the hepatic tissue genes of hyperlipidemic hamsters and found that Mei-Gin formula 4 not only promoted the expression of LXR α, ABCG5, ABCA1, and CYP51, but also inhibited the expression of ACC, FAS, DGAT-2, HMG-CoA reductase, SREBP-1a, and SREBP-1c. In addition, it increased the richness and diversity of the gut microbiota in hyperlipidemia hamsters. Also, it increased the number of Lactobacillus acidophilus and Bifidobacterium animalis, and reduced Helicobacter pylori abundance, which could improve cholesterol metabolism and inhibited its synthesis to reach hypolipidemic effect. Based on these results, Mei-Gin formula 4 had the function to improve dyslipidemia in high-fat/cholesterol-diet-induced hamsters. It would be used to develop into health food to regulate serum lipid profiles in the future.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:食品暨應用生物科技學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105043301-1.pdf5.59 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.