Please use this identifier to cite or link to this item:
標題: 植生型乳酸菌株Lactobacillus brevis YW108降低甲醛能力特性及其他益生功能體外試驗之研究
Study on the characterization of formaldehyde reduction and in vitro probiotic properties of Lactobacillus brevis YW108.
作者: 沈逸妃
Yi-Fei Shen
關鍵字: Lactobacillus brevis YW108;膽鹽水解酵素;未結合型膽鹽;甲醛;Lactobacillus Brevis YW108;bile salt hydrolase;unconjugated bile salts;formaldehyde;formaldehyde dehydrogenase
引用: Arts, J. H. E., Rennen, M. A. J. & Heer, C. de. (2006) Inhaled formaldehyde: Evaluation of sensory irritation in relation to carcinogenicity. Regul. Toxicol. Pharmacol. 44(2), 144–160. doi:10.1016/j.yrtph.2005.11.006 Begley, M., Hill, C. & Gahan, C. G. M. (2006) Bile Salt Hydrolase Activity in Probiotics Bile Salt Hydrolase Activity in Probiotics. Appl. Environ. Microbiol. 72(3), 1729–1738. doi:10.1128/AEM.72.3.1729 Cano-Garrido, O., Seras-Franzoso, J. & Garcia-Fruitós, E. (2015) Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb. Cell Factories 14(1), 137. doi:10.1186/s12934-015-0313-6 Carr, F. J., Chill, D. & Maida, N. (2002) The Lactic Acid Bacteria: A Literature Survey. Crit. Rev. Microbiol. 28(4), 281–370. doi:10.1080/1040-840291046759 Chen, G. & Pramanik, B. N. (2008) LC-MS for protein characterization: current capabilities and future trends. Expert Rev. Proteomics 5(3), 435–444. doi:10.1586/14789450.5.3.435 Davis, C. E., Rifkind, B. M., Brenner, H. & Gordon, D. J. (1990) A Single Cholesterol Measurement Underestimates the Risk of Coronary Heart Disease. JAMA 264(23), 3044. doi:10.1001/jama.1990.03450230080033 Flint, J. F. & Garner, M. R. (2009) Feeding beneficial bacteria: A natural solution for increasing efficiency and decreasing pathogens in animal agriculture. J. Appl. Poult. Res. 18(2), 367–378. doi:10.3382/japr.2008-00133 Florou-Paneri, P., Christaki, E. & Bonos, E. (2013) Lactic Acid Bacteria as Source of Functional Ingredients. In: Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes (J. M. Kongo, ed.). InTech. doi:10.5772/47766 Gentry, P. R., Rodricks, J. V., Turnbull, D., Bachand, A., Landingham, C. V., Shipp, A. M., Albertini, R. J., et al. (2013) Formaldehyde exposure and leukemia: Critical review and reevaluation of the results from a study that is the focus for evidence of biological plausibility. Crit. Rev. Toxicol. 43(8), 661–670. doi:10.3109/10408444.2013.818618 Gilliland, S. E. (1990) Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Lett. 87(1), 175–188. doi:10.1016/0378-1097(90)90705-U Guo, C. F., Zhang, L. W., Han, X., Li, J. Y., Du, M., Yi, H. X., Feng, Z., et al. (2011) Short communication: A sensitive method for qualitative screening of bile salt hydrolase-active lactobacilli based on thin-layer chromatography. J. Dairy Sci. 94(4), 1732–1737. doi:10.3168/jds.2010-3801 Heng Zhu, Metin Bilgin & Snyder, M. (2003) Proteomics. Annu. Rev. Biochem. 72(1), 783–812. doi:10.1146/annurev.biochem.72.121801.161511 Kallen, R. G. & Jencks, W. P. (1966) The Mechanism of the Condensation of Formaldehyde with Tetrahydrofolic Acid. J. Biol. Chem. 241(24), 5851–5863. Karpievitch, Y. V., Polpitiya, A. D., Anderson, G. A., Smith, R. D. & Dabney, A. R. (2010) Liquid Chromatography Mass Spectrometry-Based Proteomics: Biological and Technological Aspects. Ann. Appl. Stat. 4(4), 1797–1823. doi:10.1214/10-AOAS341 Khaksar, G., Treesubsuntorn, C. & Thiravetyan, P. (2016) Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: Potentials and challenges for airborne formaldehyde removal. Plant Physiol. Biochem. 107, 326–336. doi:10.1016/j.plaphy.2016.06.020 Kim, K.-H., Jahan, S. A. & Lee, J.-T. (2011) Exposure to Formaldehyde and Its Potential Human Health Hazards. J. Environ. Sci. Health Part C 29(4), 277–299. doi:10.1080/10590501.2011.629972 Koivusalo, M., Baumann, M. & Uotila, L. (1989) Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett. 257(1), 105–109. doi:10.1016/0014-5793(89)81797-1 Kumar, M., Nagpal, R., Kumar, R., Hemalatha, R., Verma, V., Kumar, A., Chakraborty, C., et al. (2012) Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp. Diabetes Res. 2012. doi:10.1155/2012/902917 Li, J., Zhang, N., Hu, L., Li, Z., Li, R., Li, C. & Wang, S. (2011) Improvement in chewing activity reduces energy intake in one meal and modulates plasma gut hormone concentrations in obese and lean young Chinese men–. Am. J. Clin. Nutr. 94(3), 709–716. doi:10.3945/ajcn.111.015164 Liu, X., Cao, S. & Zhang, X. (2015) Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet 63. doi:10.1021/acs.jafc.5b02404 Makoto ANDO, Tadashi YOSHIMOTO, Susumu OGUSHI, Kaoru RIKITAKE, Shuji SHIBATA & Daisuke TSURU. (1979) Formaldehyde Dehydrogenase from Pseudomonas putida. Retrieved from Marx, C. J., Miller, J. A., Chistoserdova, L. & Lidstrom, M. E. (2004) Multiple Formaldehyde Oxidation/Detoxification Pathways in Burkholderia fungorum LB400. J. Bacteriol. 186(7), 2173–2178. doi:10.1128/JB.186.7.2173-2178.2004 Mi, Y., Su, R., Fan, D. D., Zhu, X. L. & Zhang, W. N. (2013) Preparation of N,O-carboxymethyl chitosan coated alginate microcapsules and their application to Bifidobacterium longum BIOMA 5920. Mater. Sci. Eng. C 33(5), 3047–3053. doi:10.1016/j.msec.2013.03.035 Nebrich, G., Herrmann, M., Sagi, D., Klose, J. & Giavalisco, P. (2007) High MS-compatibility of silver nitrate-stained protein spots from 2-DE gels using ZipPlates and AnchorChips for successful protein identification. ELECTROPHORESIS 28(10), 1607–1614. doi:10.1002/elps.200600656 Nelson & Cox. (2011) Principles of Biochemistry, Vol. 17. doi:10.1007/s11655-011-0820-1 Oeko-Tex. (2011) Oeko-Tex Standard 100. Papagianni, M. (2012) Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput. Struct. Biotechnol. J. 3. doi:10.5936/csbj.201210003 Perez, R. H., Zendo, T. & Sonomoto, K. (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb. Cell Factories 13(1), S3. doi:10.1186/1475-2859-13-S1-S3 Ren, J., Sun, K., Wu, Z., Yao, J. & Guo, B. (2011) All 4 Bile Salt Hydrolase Proteins Are Responsible for the Hydrolysis Activity in Lactobacillus plantarum ST-III. J. Food Sci. 76(9), M622–M628. doi:10.1111/j.1750-3841.2011.02431.x Roberts, M. S., Magnusson, B. M., Burczynski, F. J. & Weiss, M. (2002) Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin. Pharmacokinet. 41(10), 751–790. doi:10.2165/00003088-200241100-00005 Sarowska, J., Choroszy-Krol, I., Regulska-Ilow, B., Frej-Madrzak, M. & Jama-Kmiecik, A. (2013) The therapeutic effect of probiotic bacteria on gastrointestinal diseases. Adv. Clin. Exp. Med. 22(5), 759–766. Shah, N. P. (2000) Probiotic Bacteria: Selective Enumeration and Survival in Dairy Foods. J. Dairy Sci. 83(4), 894–907. doi:10.3168/jds.S0022-0302(00)74953-8 The European consumer voice in standardisation. (2016) ANEC position paper: Formaldehyde - Proposed requirements for Appendix C of the Toy Safety Directive. Retrieved from Tong, Z., Zhou, L., Li, J., Kuang, R., Lin, Y. & Ni, L. (2012) An in vitro investigation of Lactococcus lactis antagonizing cariogenic bacterium Streptococcus mutans. Arch. Oral Biol. 57(4), 376–382. doi:10.1016/j.archoralbio.2011.10.003 Ullrich, M. (Ed.). (2009) Bacterial polysaccharides: current innovations and future trends. Norfolk, UK: Caister Academic Press. Van Mil, S. W. C., Houwen, R. H. J. & Klomp, L. W. J. (2005) Genetics of familial intrahepatic cholestasis syndromes. J. Med. Genet. 42(6), 449–463. doi:10.1136/jmg.2004.026187 Vaz, F. M. & Ferdinandusse, S. (2017) Bile acid analysis in human disorders of bile acid biosynthesis. Mol. Aspects Med. 56, 10–24. doi:10.1016/j.mam.2017.03.003 Vella, A. & Camilleri, M. (2017) The Gastrointestinal Tract as an Integrator of Mechanical and Hormonal Response to Nutrient Ingestion. Diabetes 66(11), 2729–2737. doi:10.2337/dbi17-0021 Vella, A. & Camilleri, M. (2017) The Gastrointestinal Tract as an Integrator of Mechanical and Hormonal Response to Nutrient Ingestion. Diabetes 66(11), 2729–2737. doi:10.2337/dbi17-0021 Vorholt, J. A. (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch. Microbiol. 178(4), 239–249. doi:10.1007/s00203-002-0450-2 Xu, H., Jeong, H. S., Lee, H. Y. & Ahn, J. (2009) Assessment of cell surface properties and adhesion potential of selected probiotic strains. Lett. Appl. Microbiol. 49(4), 434–442. doi:10.1111/j.1472-765X.2009.02684.x Zarzycki, P. K., Wierzbowska, M. & Lamparczyk, H. (1999) Retention and separation studies of cholesterol and bile acids using thermostated thin-layer chromatography. J. Chromatogr. A 857(1–2), 255–262. doi:10.1016/S0021-9673(99)00756-6 Zhao, G. & Zhang, G. (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J. Appl. Microbiol. 99(2), 333–338. doi:10.1111/j.1365-2672.2005.02587.x Zhu, Y., Zhang, Y. & Li, Y. (2009) Understanding the industrial application potential of lactic acid bacteria through genomics. Appl. Microbiol. Biotechnol. 83(4), 597–610. doi:10.1007/s00253-009-2034-4 廖祐毅 & 葉娟美. (2016) 國立中興大學研究計劃技術報告--Lactobacillus brevis YW108生化特性分析. 國立中興大學. 林榮耀, 陳威戎, 廖大修, 林榮信, 鄭宇哲, 莊榮輝, 翟建富, et al. (2004) 教育部顧問室生物技術科技教育改進計畫--蛋白質體學. 醫藥基因生物技術教學資源中心. 王欣怡. (2015) 酸白菜醱酵液中具膽鹽水解酵素及酒精代謝菌株之研究及人類乙醛脫氫酶於安全/食品級菌株之表現. 中興大學. 經濟部標準檢驗局. (2014) 紡織製品中游離甲醛之限量. 經濟部標準檢驗局. (2014) 普通合板. 行政院環境保護署. (2017) 放流水標準, Vol. 環署水字第1060101625號 令. 衛生署. (1999) 健康食品之牙齒保健功能評估方法 ( No. 衛署食字第88037803號公告). 衛生署. (2007) 健康食品之調節血脂功能評估方法 ( No. 衛署食字第0960403114號公告修正).
乳酸菌的保健功效眾多對於許多文明病的預防與醫療輔助上均有顯著的效果,如乳酸菌中常見之膽鹽水解酵素(Bile salt hydrolyase, BSH)可以在腸道內水解結合型膽鹽(Conjugated bile salt),形成未結合型膽鹽(Unconjugated bile salts)沉澱,隨著糞便排除體外,因此具有降低膽固醇的功效,減少罹患心血管疾病的機率。
實驗室先前由酸白菜醱酵汁中篩選出之具有BSH 活性的Lactobacillus brevis YW108,實驗第一部分為探討YW108的其他益生功能特性。發現YW108可以水解GCA 及GDCA這兩種膽鹽,而有助於降低膽固醇。但於牙齒保健功能上YW108無法有效拮抗牙菌斑內突變型鏈球菌的生長,因此不具備該益生功能。
實驗第二部分為探討YW108是否具有代謝甲醛的能力。經由含有不同甲醛濃度的MRS plate找出菌株所能耐受甲醛的上限,再更進一步以高效能液相層析儀分析甲醛含量。發現YW108確實可以降低溶液中甲醛含量,以此為基礎進一步探討YW108於模擬腸胃道環境中降低甲醛的活性及產品開發,並且藉由蛋白質體及基因體的分析推測YW108降低甲醛的路徑。由實驗中可以證實YW108及凍乾產品可以抵禦模擬腸胃道液的刺激持續降低甲醛,且推測是經由Glutathione-dependent formaldehyde dehydrogenase 這類酵素活性代謝甲醛。
綜合以上所述植生型菌株Lactobacillus brevis YW108 具有降低甲醛能力及降低膽固醇及心血管疾病風險的潛力,能夠應用於保健食品產業並具有市場競爭力。

Lactic acid bacteria, which have many kinds of health efficacy, are able to prevent civilized illness and enhance medical efficacy. Bile salt hydrolyase (BSH) in lactic acid bacteria can hydrolyze conjugated bile salt into unconjugated bile salts which will precipitate and be excreted in stools. Therefore, bile salt hydrolyase can reduce cholesterol and lowering the risk of cardiovascular diseases.
Formaldehyde is a component of many consumable household products such as antiseptics, cosmetics, fabric softeners, shoe-care agents, glues and adhesives, etc. Automobile emissions and smoke usually contain formaldehyde. Formaldehyde is well known to induce acute poisoning and cause irritation, as well as carcinogenesis. Humans are usually exposed to formaldehyde damage inadvertently.
Previously, our lab screened a probiotic strain Lactobacillus brevis YW108, from fermented sour cabbage liquid. This strain has the ability of bile salt hydrolysis toward conjugated bile salts Glycocholic acid (GCA) and glycodeoxycholic acid (GDCA). In the first part of this study, we examined the ability of bile salt hydrolysis toward GCA and GDCA of YW108. The potential of dental cares was not found because YW108 can't antagonize Streptococcus mutans. Results indicate that YW108 has potentials to reduce body cholesterol level.
In the second part of this study, we explore whether YW108 is capable to reduce formaldehyde or not. The formaldehyde tolerance of YW108 was examined by using different formaldehyde concentration MRS plate, and then further analyzed by HPLC. Results showed that YW108 can reduce formaldehyde concentration in solution. Based on this fact, we examined the relationship between YW108 gastrointestinal tolerance and the formaldehyde reduction ability. As results, we conclude that YW108 can survive after 30 mint treatment of simulated gastric fluids and 3 hr simulated intestinal fluids and still remain the ability to reduce formaldehyde.
The possible mechanism of formaldehyde metabolism was predicted by genomics and proteomics analysis data. The YW108 is predicted to metabolize formaldehyde by glutathione-dependent formaldehyde dehydrogenase according to proteomics result of YW108.
In conclusion, Lactobacillus brevis YW108 can reduce formaldehyde and has potential to reduce cholesterol level. These characteristics make YW108 a competitive probiotic in health food industry.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:食品暨應用生物科技學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105043201-1.pdf8.55 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.