Please use this identifier to cite or link to this item:
標題: 濃度、酸鹼度與添加物對蓮藕粉及市售增稠劑流變性質之影響
Effect of concentration, pH, and additives on the rheological properties of lotus root powder and commercial thickeners
作者: 辜瀞瑩
Ching-Yin Ku
關鍵字: 蓮藕粉;流變性質;增稠劑;吞嚥困難;lotus root powder;rheological property;thickener;dysphagia
引用: 行政院衛生署(2010):台灣地區食品營養成分資料庫。行政院衛生署編著。台北市。台灣。 劉士榮(1995):高分子流變學。滄海書局。台中。 古德業(1994):台灣根莖作物產業概況。根莖作物生產改進及加工利用研討會專刊。,p1-10。 林佩萱:含脫色仙草葉膠之混合膠對低脂沙拉醬模式乳化系統理化性質之影響。碩士論文. 靜宜大學食品營養學研究所. 台中, 台灣。 (2006)。 林湘芸:水萃及鹼萃桑葉水合膠理化特性之研究。中興大學食品暨應用生物科技學系所學位論文。 (2011)。 孫永怡:不同糖/鹽溶液對紫玉甘藷澱粉理化性質之影響。中興大學食品暨應用生物科技學系所學位論文。 (2009)。 許春花(2008):蓮藕。北市中醫會刊。14(3),92-104。 黃靖雯:酵素修飾對文旦柚果皮多醣理化特性之影響。中興大學食品暨應用生物科技學系所學位論文。 (2013)。 劉慧瑛, & 黃菊美(1996):蓮藕簡介-藕粉成分與鑑別。技術服務。7(4),24-27。 關燕萍, 陳宗道, 鍾耕, 陳戀, & 王春豔(2007):藕澱粉的加工性能研究。农业工程学报。23(1),259-263。 Agoub, A., Smith, A. M., Giannouli, P., Richardson, R., & Morris, E. (2007). 'Melt-in-the-mouth' gels from mixtures of xanthan and konjac glucomannan under acidic conditions: A rheological and calorimetric study of the mechanism of synergistic gelation. Carbohydrate Polymers, 69(4), 713-724. Andersen, U. T., Beck, A. M., Kjaersgaard, A., Hansen, T., & Poulsen, I. (2013). Systematic review and evidence based recommendations on texture modified foods and thickened fluids for adults (≥ 18 years) with oropharyngeal dysphagia. e-SPEN Journal, 8(4), e127-e134. Baek, M., Yoo, B., & Lim, S.-T. (2004). Effects of sugars and sugar alcohols on thermal transition and cold stability of corn starch gel. Food Hydrocolloids, 18(1), 133-142. Becker, A., Katzen, F., Pühler, A., & Ielpi, L. (1998). Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Applied Microbiology and Biotechnology, 50(2), 145-152. Bednar, G. E., Patil, A. R., Murray, S. M., Grieshop, C. M., Merchen, N. R., & Fahey, G. C. (2001). Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. The Journal of Nutrition, 131(2), 276-286. Bello-Perez, L. A., & Paredes-Lopez, O. (1995). Starch and amylopectin: effect of solutes on their calorimetric behavior. Food Chemistry, 53(3), 243-247. Blonsky, E. R., Logemann, J. A., Boshes, B., & Fisher, H. B. (1975). Comparison of speech and swallowing function in patients with tremor disorders and in normal geriatric patients: a cinefluorographic study. Journal of Gerontology, 30(3), 299-303. Bozzi, L., Milas, M., & Rinaudo, M. (1996). Solution and gel rheology of a new polysaccharide excreted by the bacterium Alteromonas sp. strain 1644. International Journal of Biological Macromolecules, 18(1-2), 83-91. Burros, B. C., Young, L. A., & Carroad, P. A. (1987). Kinetics of corn meal gelatinization at high temperature and low moisture. Journal of Food Science, 52(5), 1372-1376. Calcaterra, T. C., Kadell, B. M., & Ward, P. H. (1975). Dysphagia secondary to cricopharyngeal muscle dysfunction: surgical management. Archives of Otolaryngology, 101(12), 726-729. Campbell, A. M., Penfield, M. P., & Griswold, R. M. (1979). The experimental study of food. Boston: Houghton Mifflin Co. Chauveteau, G. (1982). Rodlike polymer solution flow through fine pores: influence of pore size on rheological behavior. Journal of Rheology, 26(2), 111-142. Chen, Y.-C., Chen, L.-W., & Lu, W.-H. (2011). Power loss characteristics of a sensing element based on a polymer optical fiber under cyclic tensile elongation. Sensors, 11(9), 8741-8750. Cheng, W., Bullitt, E., Bhattacharyya, L., Brewer, C. F., & Makowski, L. (1998). Electron microscopy and x-ray diffraction studies of Lotus tetragonolobus A isolectin cross-linked with a divalent Lewisx oligosaccharide, an oncofetal antigen. Journal of Biological Chemistry, 273(52), 35016-35022. Chiotelli, E., Rolée, A., & Le Meste, M. (2000). Effect of sucrose on the thermomechanical behavior of concentrated wheat and waxy corn starch− water preparations. Journal of Agricultural and Food Chemistry, 48(4), 1327-1339. Chronakis, I. S., Doublier, J.-L., & Piculell, L. (2000). Viscoelastic properties for kappa-and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 28(1), 1-14. Cichero, J. A., Steele, C., Duivestein, J., Clavé, P., Chen, J., Kayashita, J., Dantas, R., Lecko, C., Speyer, R., & Lam, P. (2013). The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: foundations of a global initiative. Current Physical Medicine and Rehabilitation Reports, 1(4), 280-291. Clark, A. H., & Ross-Murphy, S. B. (1987). Structural and mechanical properties of biopolymer gels. In Biopolymers (pp. 57-192): Springer. Clavé, P., De Kraa, M., Arreola, V., Girvent, M., Farre, R., Palomera, E., & Serra‐Prat, M. (2006). The effect of bolus viscosity on swallowing function in neurogenic dysphagia. Alimentary pharmacology & Therapeutics, 24(9), 1385-1394. Collado, L. S., Mabesa, R., & Corke, H. (1999). Genetic variation in the physical properties of sweet potato starch. Journal of Agricultural and Food Chemistry, 47(10), 4195-4201. Cooley, R. N., Donner, M. W., & Silbiger, M. L. (1966). Cinefluorographic analysis of pharyngeal swallowing in neuromuscular disorders. The American Journal of the Medical Sciences, 251(5), 600-616. D'appolonia, B. (1972). Effect of bread ingredients on starch-gelatinization properties as measured by the amylograph. Cereal Chemistry, 49, 532-543. Dai, L., Liu, X., Liu, Y., & Tong, Z. (2008). Concentration dependence of critical exponents for gelation in gellan gum aqueous solutions upon cooling. European Polymer Journal, 44(12), 4012-4019. Dawson, R. M. C., Elliott, D. C., Elliott, W. H., & Jones, K. M. (1969). Data for biochemical research (Vol. 316): Clarendon Press Oxford. De Brito, A. C. F., Sierakowski, M. R., Reicher, F., Feitosa, J. P., & De Paula, R. C. M. (2005). Dynamic rheological study of Sterculia striata and karaya polysaccharides in aqueous solution. Food Hydrocolloids, 19(5), 861-867. de Saint-Aubert, C., Sworn, G., & Kayashita, J. (2014). Comparison of two tests used for the classification of food thickeners in the management of dysphagia. Gums and Stabilisers for the Food Industry, 17, 359-368. Dengate, H. (1984). Swelling, pasting, and gelling of wheat starch. Advances in Cereal Science and Technology (USA). Dietitians Association of Australia. (2007). Texture‐modified foods and thickened fluids as used for individuals with dysphagia: Australian standardised labels and definitions. Nutrition & Dietetics, 64, S53-S76. Eliasson, A. C. (1986). Viscoelastic behaviour during the gelatinization of starch i. Comparison of wheat, maize, potato and waxy‐barley starches. Journal of Texture Studies, 17(3), 253-265. Ensikat, H., Boese, M., Mader, W., Barthlott, W., & Koch, K. (2006). Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. Chemistry and Physics of Lipids, 144(1), 45-59. Funami, T. (2017). In vivo and rheological approaches for characterizing food oral processing and usefulness of polysaccharides as texture modifiers-A review. Food Hydrocolloids, 68, 2-14. Garcia, J. M., Chambers, E., Matta, Z., & Clark, M. (2008). Serving temperature viscosity measurements of nectar-and honey-thick liquids. Dysphagia, 23(1), 65-75. Garin, N., De Pourcq, J. T., Martin-Venegas, R., Cardona, D., Gich, I., & Mangues, M. A. (2014). Viscosity differences between thickened beverages suitable for elderly patients with dysphagia. Dysphagia, 29(4), 483-488. Geng, Z., Zongdao, C., & Yimin, W. (2007). Physicochemical properties of lotus (Nelumbo nucifera Gaertn.) and kudzu (Pueraria hirsute Matsum.) starches. International Journal of Food Science & Technology, 42(12), 1449-1455. Glibowski, P., & Bukowska, A. (2011). The effect of pH, temperature and heating time on inulin chemical stability. Acta Scientiarum Polonorum Technologia Alimentaria, 10(2), 189-196. Glibowski, P., & Wasko, A. (2008). Effect of thermochemical treatment on the structure of inulin and its gelling properties. International Journal of Food Science & Technology, 43(11), 2075-2082. Groher, M. E., & Bukatman, R. (1986). The prevalence of swallowing disorders in two teaching hospitals. Dysphagia, 1(1), 3-6. Gunaratne, A., Ranaweera, S., & Corke, H. (2007). Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl β-cyclodextrin. Carbohydrate Polymers, 70(1), 112-122. Guo, L. (2017). Enzymatic hydrolysis of lotus rhizome starch using α-amylase and glucoamylase. Journal of Food and Nutrition Research (ISSN 1336-8672), 56(4), 372-380. Guyton, A., & Hall, J. (2006). Textbook of medical physiology 11th edition Elsevier Inc. Hadde, E. (2017). Understanding the Rheological Parameters of Thickened Fluids for Dysphagia Sufferers. The University of Queensland, Australia. Hadde, E., Nicholson, T., & Cichero, J. (2013). Rheological charaterisation of thickened fluids for dysphagia sufferers. Chemeca 2013: Challenging Tomorrow, 161. Hanson, B. (2016). A review of diet standardization and bolus rheology in the management of dysphagia. Current Opinion in Otolaryngology & Head and Neck Surgery, 24(3), 183-190. Hanson, B., O'Leary, M. T., & Smith, C. H. (2012). The effect of saliva on the viscosity of thickened drinks. Dysphagia, 27(1), 10-19. Hember, M., & Morris, E. R. (1995). Solubility, solution rheology and salt-induced gelation of welan polysaccharide in organic solvents. Carbohydrate Polymers, 27(1), 23-36. Hizukuri, S. (1957). X-Ray Diffractometric Studies on Starches. II. Structure of' C'-Type Crystal-lite. Nougeikagakugakkaishi, 31(7), 525-527. Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45(3), 253-267. Hoover, R., & Hadziyev, D. (1981). Characterization of potato starch and its monoglyceride complexes. Starch‐Stärke, 33(9), 290-300. Hsien-Chih, H. W., & Sarko, A. (1978). The double-helical molecular structure of crystalline A-amylose. Carbohydrate Research, 61(1), 27-40. Hurwitz, A. L., Nelson, J. A., & Haddad, J. K. (1975). Oropharyngeal dysphagia. Digestive Diseases and Sciences, 20(4), 313-324. Iagher, F., Reicher, F., & Ganter, J. (2002). Structural and rheological properties of polysaccharides from mango (Mangifera indica L.) pulp. International Journal of Biological Macromolecules, 31(1-3), 9-17. Ishihara, S., Nakauma, M., Funami, T., Odake, S., & Nishinari, K. (2011a). Viscoelastic and fragmentation characters of model bolus from polysaccharide gels after instrumental mastication. Food Hydrocolloids, 25(5), 1210-1218. Ishihara, S., Nakauma, M., Funami, T., Odake, S., & Nishinari, K. (2011b). Swallowing profiles of food polysaccharide gels in relation to bolus rheology. Food Hydrocolloids, 25(5), 1016-1024. Jane, J. L. (1993). Mechanism of starch gelatinization in neutral salt solutions. Starch‐Stärke, 45(5), 161-166. Ji, L., Gao, W., Wei, J., Pu, L., Yang, J., & Guo, C. (2015). In vivo antioxidant properties of lotus root and cucumber: A pilot comparative study in aged subjects. The journal of Nutrition, Health & Aging, 19(7), 765-770. Jiménez-Avalos, H., Ramos-Ramírez, E., & Salazar-Montoya, J. (2005). Viscoelastic characterization of gum arabic and maize starch mixture using the Maxwell model. Carbohydrate Polymers, 62(1), 11-18. Kapoor, V. P., Taravel, F. R., Joseleau, J.-P., Milas, M., Chanzy, H., & Rinaudo, M. (1998). Cassia spectabilis DC seed galactomannan: structural, crystallographical and rheological studies. Carbohydrate Research, 306(1-2), 231-241. Karagiannis, M. J., Chivers, L., & Karagiannis, T. C. (2011). Effects of oral intake of water in patients with oropharyngeal dysphagia. BMC geriatrics, 11(1), 9. Khan, A., Carmona, R., & Traube, M. (2014). Dysphagia in the elderly. Clinics in Geriatric Medicine, 30(1), 43-53. Kikuchi, T., Michiwaki, Y., Koshizuka, S., Kamiya, T., & Toyama, Y. (2017). Numerical simulation of interaction between organs and food bolus during swallowing and aspiration. Computers in Biology and Medicine, 80, 114-123. Kim, Y., Faqih, M., & Wang, S. (2001). Factors affecting gel formation of inulin. Carbohydrate Polymers, 46(2), 135-145. Kim, Y., Wiesenborn, D. P., Orr, P. H., & Grant, L. A. (1995). Screening potato starch for novel properties using differential scanning calorimetry. Journal of Food Science, 60(5), 1060-1065. Kuo, B., & Urma, D. (2006). Esophagus-anatomy and development. GI Motility online. Lai, L.-S., & Chiang, H.-F. (2002). Rheology of decolorized hsian-tsao leaf gum in the dilute domain. Food Hydrocolloids, 16(5), 427-440. Lauzon, R., Shiraishi, K., Yamazaki, M., Sawayama, S., Sugiyama, N., & Kawabata, A. (1995). Physicochemical properties of cocoyam starch. Food Hydrocolloids, 9(2), 77-81. Layne, K. A., Losinski, D. S., Zenner, P. M., & Ament, J. A. (1989). Using the Fleming index of dysphagia to establish prevalence. Dysphagia, 4(1), 39-42. Lee, C. H., Moturi, V., & Lee, Y. (2009). Thixotropic property in pharmaceutical formulations. Journal of Controlled Release, 136(2), 88-98. Li, S., Li, X., Lamikanra, O., Luo, Q., Liu, Z., & Yang, J. (2017). Effect of cooking on physicochemical properties and volatile compounds in lotus root (Nelumbo nucifera Gaertn). Food Chemistry, 216, 316-323. Lii, C., & Lee, B. (1993). Heating A-, B-, and C-type starches in aqueous sodium chloride: effects of sodium chloride concentration and moisture content on differential scanning calorimetry thermograms. Cereal Chemistry, 70, 188-188. Lim, S.-T. (1994). Characterization of phosphorus in starch by^< 31> P-nuclear magnetic resonance spectroscopy. Cereal Chemistry, 71, 488-493. Lin, H.-M., Chang, Y.-H., Lin, J.-H., Jane, J.-l., Sheu, M.-J., & Lu, T.-J. (2006). Heterogeneity of lotus rhizome starch granules as revealed by α-amylase degradation. Carbohydrate Polymers, 66(4), 528-536. Liu, J.-z., Wang, R.-k., Gao, F.-y., Zhou, J.-h., & Cen, K.-f. (2012). Rheology and thixotropic properties of slurry fuel prepared using municipal wastewater sludge and coal. Chemical Engineering Science, 76, 1-8. Logemann, J. A. (1983). Evaluation and treatment of swallowing disorders. Mackley, M., Tock, C., Anthony, R., Butler, S., Chapman, G., & Vadillo, D. (2013). The rheology and processing behavior of starch and gum-based dysphagia thickeners. Journal of Rheology, 57(6), 1533-1553. Man, J., Cai, J., Cai, C., Xu, B., Huai, H., & Wei, C. (2012). Comparison of physicochemical properties of starches from seed and rhizome of lotus. Carbohydrate Polymers, 88(2), 676-683. Martínez, I., Kim, J., Duffy, P. R., Schlegel, V. L., & Walter, J. (2010). Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLOS ONE, 5(11), e15046. McNaught, A. D., & McNaught, A. D. (1997). Compendium of chemical terminology (Vol. 1669): Blackwell Science Oxford. McPherson, A., & Jane, J.-l. (1999). Comparison of waxy potato with other root and tuber starches. Carbohydrate Polymers, 40(1), 57-70. Meng, Y., Rao, M., & Datta, A. (2005). Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids. Food and Bioproducts Processing, 83(4), 297-305. Mewis, J., & Wagner, N. J. (2009). Thixotropy. Advances in Colloid and Interface Science, 147, 214-227. Mezger, T. G. (2006). The rheology handbook: for users of rotational and oscillatory rheometers (3 ed.). Germany: Vincentz Network GmbH & Co KG. Miles, T. S., Nauntofte, B., & Svensson, P. (2004). Clinical oral physiology. USA: Quintessence Miller, A. J. (1982). Deglutition. Physiological Reviews, 62(1), 129-184. Moorhouse, R., Walkinshaw, M., & Arnott, S. (1977). Xanthan Gum- Molecular Conformation and Interactions. In: ACS Publications. Moorthy, S. N. (1994). Tuber crop starches. India: Central Tuber Crops Research Institute. Morris, E., Gothard, M., Hember, M., Manning, C., & Robinson, G. (1996). Conformational and rheological transitions of welan, rhamsan and acylated gellan. Carbohydrate Polymers, 30(2-3), 165-175. Nara, S., & Komiya, T. (1983). Studies on the relationship between water‐satured state and crystallinity by the diffraction method for moistened potato starch. Starch‐Stärke, 35(12), 407-410. National Dysphagia Diet Task Force. (2002). National dysphagia diet: standardization for optimal care. USA: American Dietetic Association. Nishinari, K., Watase, M., Kohyama, K., Nishinari, N., Oakenfull, D., Koide, S., Ogino, K., Williams, P. A., & Phillips, G. O. (1992). The effect of sucrose on the thermo-reversible gel-sol transition in agarose and gelatin. Polymer Journal, 24(9), 871. Oosten, B. (1979). Substantial rise of gelatinization temperature of starch by adding hydroxide. Starch‐Stärke, 31(7), 228-230. Pelletier, C. A. (1997). A comparison of consistency and taste of five commercial thickeners. Dysphagia, 12(2), 74-78. Perry, P., & Donald, A. (2002). The effect of sugars on the gelatinisation of starch. Carbohydrate Polymers, 49(2), 155-165. Purves, W. K., Orians, G. H., Sadava, D., & Heller, H. C. (2003). Life: the science of biology: volume III: plants and animals (Vol. 3): Macmillan. Rao, M. (1992). Measurement of viscoelastic properties of fluid and semisolid foods. Viscoelastic Properties of Foods, 207-231. Ratnayake, W. S., & Jackson, D. S. (2008). Starch gelatinization. Advances in food and nutrition research, 55, 221-268. Remsen, C. H., & Clark, J. P. (1978). A viscosity model for a cooking dough. Journal of Food Process Engineering, 2(1), 39-64. Reyes-Ocampo, I., Aguayo-Vallejo, J., Ascanio, G., & Córdova-Aguilar, M. (2017). Rheological characterization of modified foodstuffs with food grade thickening agents. In Journal of Physics: Conference Series (Vol. 790, pp. 012028): IOP Publishing. Rinaudo, M. (2001). Relation between the molecular structure of some polysaccharides and original properties in sol and gel states. Food Hydrocolloids, 15(4-6), 433-440. Schramm, G. (1994). A practical approach to rheology and rheometry. Germany: Gebrueder HAAKE GmbH. Shi, X., Wang, W., & Wang, A. (2013). pH-responsive sodium alginate-based superporous hydrogel generated by an anionic surfactant micelle templating. Carbohydrate Polymers, 94(1), 449-455. Shi, Y.-C., & Seib, P. A. (1992). The structure of four waxy starches related to gelatinization and retrogradation. Carbohydrate Research, 227, 131-145. Sittikijyothin, W., Torres, D., & Gonçalves, M. (2005). Modelling the rheological behaviour of galactomannan aqueous solutions. Carbohydrate Polymers, 59(3), 339-350. Soni, P. L., Sharma, H., Srivastava, H. C., & Gharia, M. M. (1990). Physicochemical properties of Canna edulis starch—Comparison with maize starch. Starch‐Stärke, 42(12), 460-464. Sopade, P., Halley, P., Cichero, J., Ward, L., Liu, J., & Varliveli, S. (2008). Rheological characterization of food thickeners marketed in Australia in various media for the management of dysphagia. III. Fruit juice as a dispersing medium. Journal of Food Engineering, 86(4), 604-615. Spies, R. D., & Hoseney, R. C. (1982). Effect of Sugars on Starch Gelatinization. Cereal Chemistry, 59, 128-131. Srichuwong, S., Isono, N., Mishima, T., & Hisamatsu, M. (2005). Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. International Journal of Biological Macromolecules, 37(3), 115-121. Steeneken, P. (1989). Rheological properties of aqueous suspensions of swollen starch granules. Carbohydrate Polymers, 11(1), 23-42. Steffe, J. F. (1996). Rheological methods in food process engineering. USA: Freeman Press. Sun, S., Zhang, G., & Ma, C. (2016). Preparation, physicochemical characterization and application of acetylated lotus rhizome starches. Carbohydrate Polymers, 135, 10-17. Suzuki, A., Hizukuri, S., & Takeda, Y. (1981). Physicochemical studies of kuzu starch. Cereal Chemistry, 58(4), 286-290. Suzuki, A., Kaneyama, M., Shibanuma, K., Takeda, Y., Abe, J., & Hizukuri, S. (1992). Characterization of lotus starch. Cereal Chemistry, 69(3), 309-315. Sworn, G. (2009). Xanthan gum. In Handbook of Hydrocolloids (Second Edition) (pp. 186-203): Elsevier. Sworn, G. (2017). Rheology Modifiers for the Management of Dysphagia. In Rheology of Biological Soft Matter (pp. 233-263): Springer. Takahashi, K., Shirai, K., Wada, K., & Kawamura, A. (1980). Effects of salts and sugars on the gelatinization temperature of starch. Journal of the Japanese Society of Starch Science, 27(1), 22-27. Takeda, C., Takeda, Y., & Hizukuri, S. (1983). Physicochemical properties of lily starch. Cereal Chemistry, 60(3), 212-216. Taylor, S., Sivak, M. N., & Preiss, J. (1998). Starch: basic science to biotechnology (Vol. 41): Academic Press. Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151-165. Thivend, P., MERCIER, C., & Guilbot, A. (1972). Determination of starch with glucoamylase. In General Carbohydrate Method (pp. 100-105): Elsevier. Tian, S., Rickard, J., & Blanshard, J. (1991). Physicochemical properties of sweet potato starch. Journal of the Science of Food and Agriculture, 57(4), 459-491. Tortora, G. J., & Derrickson, B. H. (2008). Principles of anatomy and physiology: John Wiley & Sons. Vickers, Z., Damodhar, H., Grummer, C., Mendenhall, H., Banaszynski, K., Hartel, R., Hind, J., Joyce, A., Kaufman, A., & Robbins, J. (2015). Relationships among rheological, sensory texture, and swallowing pressure measurements of hydrocolloid-thickened fluids. Dysphagia, 30(6), 702-713. Wang, S., Liu, H., Gao, W., Chen, H., Yu, J., & Xiao, P. (2006). Characterization of new starches separated from different Chinese yam (Dioscorea opposita Thunb.) cultivars. Food Chemistry, 99(1), 30-37. Whittaker, L. E., Al-Ruqaie, I. M., Kasapis, S., & Richardson, R. K. (1997). Development of composite structures in the gellan polysaccharide/sugar system. Carbohydrate Polymers, 33(1), 39-46. Wickramasinghe, H. A. M., Takigawa, S., Matsuura-Endo, C., Yamauchi, H., & Noda, T. (2009). Comparative analysis of starch properties of different root and tuber crops of Sri Lanka. Food Chemistry, 112(1), 98-103. Winter, H. H., & Chambon, F. (1986). Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. Journal of Rheology, 30(2), 367-382. Wood, F. (1968). Psychophysical studies on the consistency of liquid foods. In Rheology and Texture of Food Stuffs (pp. 40-49). London: Society of Chemical Industry. Xu, X., Liu, W., & Zhang, L. (2006). Rheological behavior of Aeromonas gum in aqueous solutions. Food Hydrocolloids, 20(5), 723-729. You, J. S., Lee, Y. J., Kim, K. S., Kim, S. H., & Chang, K. J. (2014). Ethanol extract of lotus (Nelumbo nucifera) root exhibits an anti-adipogenic effect in human pre-adipocytes and anti-obesity and anti-oxidant effects in rats fed a high-fat diet. Nutrition Research, 34(3), 258-267. Zargaraan, A., Rastmanesh, R., Fadavi, G., Zayeri, F., & Mohammadifar, M. A. (2013). Rheological aspects of dysphagia-oriented food products: A mini review. Food Science and Human Wellness, 2(3), 173-178. Zhang, T., & Oates, C. (1999). Relationship between α-amylase degradation and physico-chemical properties of sweet potato starches. Food Chemistry, 65(2), 157-163. Zhu, B., Ma, D., Wang, J., Zhang, J., & Zhang, S. (2016). Multi-responsive hydrogel based on lotus root starch. International Journal of Biological Macromolecules, 89, 599-604. Zobel, H. (1992). Starch: sources, production, and properties. Starch hydrolysis products, 23-44. Zobel, H., & Stephen, A. (1995). Starch: structure, analysis, and application. In Food Polysaccharides and Their Applications (pp. 19-66). New York: Marcel Dekker
本實驗旨為探討濃度、酸鹼度、糖及鹽對於蓮藕粉及兩種市售增稠劑(Nestle、益富)之流變特性影響。蓮藕粉之基本組成分中,水分含量約為12.5(% d.b.),粗蛋白約0.07%、粗脂質約0.06%,以及灰分0.12%。而其澱粉收率約為92.77%,其中含有40%之抗性澱粉。顆粒呈現狹長橢圓形,大小則約為40-50μm,為C-type澱粉,並有38.88%之結晶度。利用快速黏度分析儀(RVA)將蓮藕粉樣品進行糊化,發現其糊化溫度約為74.95℃。糊化後的樣品以動態流變儀觀察各因子對其穩剪切流變行為、黏彈性質,以及蠕變試驗之影響。結果顯示,三種樣品皆具有剪稀性值,並且隨濃度增加,剪稀性質上升。在低剪切速率(0.01-0.1 s-1)下三者皆具有零剪切黏度,當濃度增加,樣品脫離零剪切黏度狀態時所需的臨界剪切速率便下降。以剪切速率為50 s-1時之黏度為依據,選擇蓮藕粉2.5%、Nestle 1.5%及益富1.5%進行酸鹼度、糖及鹽之試驗。蠕變試驗可得到,高濃度樣品有較高的抗蠕變性,且蓮藕粉之遲滯時間在1.5%-3%時明顯小於兩種市售增稠劑,顯示蓮藕粉糊化液較市售增稠劑更趨向黏彈性固體。黏彈性質部分,三者之儲存模量與損耗模量皆隨著頻率增加而上升,並皆屬於弱膠體的結構。添加糖時,蓮藕粉之模量有些微上升的趨勢,顯示糖的添加對於蓮藕粉凝膠網狀結構有正面貢獻。添加鹽離子時則僅有儲存模量上升,顯示鹽離子對蓮藕粉之彈性性質貢獻較大。當酸鹼值越偏離中性(pH >8、pH <5)時,儲存模量顯著下降,當pH=9時,蓮藕粉之凝膠結構特性由弱膠體變為濃縮溶液,顯示高鹼性對蓮藕粉結構破壞最強。當應用於市售蘋果汁(低pH、含糖)及高湯(含鹽、油脂)時,蓮藕粉之黏度變動較大,顯示其增稠性質較Nestle及益富不穩定。

The effect of concentration, pH, sugar and salt were studied on the rheological properties of lotus root powder and two commercial thickeners. The proximate composition analysis of lotus root powder were with moisture 12.5% d.b. , crude protein 0.07%, crude lipid 0.06%, and ash 0.12%.The recovery of starch was 92.77%, containing 40% of resistant starch. The size of granules ranging from 40-50 μm with narrow oval shape. It belong to C-type, and the relative crystallinity was 38.88%. Used rapid viscosity analysis to gelatinize the lotus root powder, the pasting temperature was 74.95℃, and done the steady shear, frequency sweep test, and the creep test with rheometer. All of the samples show the shear thinning property, and became more shear thinning with the concentration increase. Under low shear rate (0.01-0.1 s-1), all samples have zero-shear viscosity, and when the concentration increase, the critical shear rate decreased. Used the viscosity under 50 s-1, chose 2.5% of lotus root powder, 1.5% of Nestle and Yifu to do the pH, sugar and salt effect test. From the creep test, samples showed high resistant to stress, and the retardation time of lotus root powder much lower than other two samples, displayed the paste of lotus root powder was more tend to viscoelastic solid than the commercial thickeners. On the viscoelastic property, all the storage modulus and loss modulus were increase with frequency, belong to weak gel structure. When added sugar, the modulus of lotus root powder were slightly increase, indicated sugar had positive correlation with the gel structure of lotus root powder. When added salt, only the storage modulus increased, displayed the salt have positive effect on the elastic property of lotus root powder. Under severe pH condition(pH >8, pH <5), the storage modulus decreased significantly, under pH = 9, the structure of lotus root paste became concentrated solution, indicated that the base destroyed the paste structure. When used all samples on commercial apple juice (low pH, containing sugar)and soup stock (containing salt and oil), the viscosity of lotus root paste change the most, which means its thickening property is more unstable then commercials thickeners.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-16起公開。
Appears in Collections:食品暨應用生物科技學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105043109-1.pdf4.19 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.