Please use this identifier to cite or link to this item:
標題: 管餵苦丁茶甲醇萃取物對皮下負載TRAMP-C1癌細胞之C57BL/6J雄鼠體內免疫反應及癌化指標變化之影響
Effects of Ilex kudingcha methanol extracts on immune responses and carcinogenic markers in male C57BL/6J mice subcutaneously loaded with TRAMP-C1 cancer cells
作者: 張曉青
Sheau-Ching Chang
關鍵字: 癌症免疫療法;苦丁茶甲醇萃取物;小鼠前列腺癌細胞TRAMP-C1;Cancer immunotherapy;Ilex kudingcha methanol extract;Mouse prostate cancer TRAMP-C1 cells
引用: 林姿婷。(2014)。苦丁茶與空心蓮子草不同萃取物對初代免疫細胞與自然殺手細胞免疫調節能力之影響及其與前列腺癌細胞及乳腺癌細胞間交互作用。國立中興大學食品暨應用生物科技學系碩士論文。 林筱茜。(2018)。五種多醣對免疫調節功能及癌症免疫療法之影響。國立中興大學食品暨應用生物科技學系博士論文。 楊婉莉。(2016)。苦丁茶甲醇萃取物中免疫調節有效成分之區分物及其對人類前列腺癌PC-3細胞生長之抑制作用。國立中興大學食品暨應用生物科技學系碩士論文。 賀震旦,等。苦丁茶研究与开发。(2010)。科学出版社。 Abu, N., Mohamed, N. E., Yeap, S. K., Lim, K. L., Akhtar, M. N., Zulfadli, A. J. Alitheen, N. B. (2015). In Vivo Anti-Tumor Effects of Flavokawain A in 4T1 Breast Cancer Cell-Challenged Mice. Anticancer Agents Med Chem, 15(7), 905-915. Allison, A. C., Ferluga, J., Prydz, H., & Schorlemmer, H. U. (1978). The role of macrophage activation in chronic inflammation. Agents Actions, 8(1-2), 27-35. Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K. Hanahan, D. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2(10), 737-744. Charlton, B., & Lafferty, K. J. (1995). The Th1/Th2 balance in autoimmunity. Curr Opin Immunol, 7(6), 793-798. Chen, D. S., & Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity, 39(1), 1-10. Chengwu Song, Chao Xie, Zhiwen Zhou, Shanggong Yu, and Nianbai Fang. (2012). Antidiabetic Effect of an Active Components Group from Ilex kudingcha and Its Chemical Composition. Evid.-Based Complementary Altern. Med. Article ID 423690, 12 pages. Available from: Cohen, P., Graves, H. C., Peehl, D. M., Kamarei, M., Giudice, L. C., & Rosenfeld, R. G. (1992). Prostate-specific antigen (PSA) is an insulin-like growth factor binding protein-3 protease found in seminal plasma. J Clin Endocrinol Metab, 75(4), 1046-1053. Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30(7), 1073-1081. Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103(3), 481-490. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860-867. Dandekar, R. C., Kingaonkar, A. V., & Dhabekar, G. S. (2011). Role of macrophages in malignancy. Ann Maxillofac Surg, 1(2), 150-154. Diakos, C. I., Charles, K. A., McMillan, D. C., & Clarke, S. J. (2014). Cancer-related inflammation and treatment effectiveness. Lancet Oncol, 15(11), e493-503. Elenkov, I. J. (2004). Glucocorticoids and the Th1/Th2 balance. Ann N Y Acad Sci, 1024, 138-146. Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J. W., Comber, H., .Bray, F. (2013). Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer, 49(6), 1374-1403. Forones, N. M., Mandowsky, S. V., & Lourenco, L. G. (2001). Serum levels of interleukin-2 and tumor necrosis factor-alpha correlate to tumor progression in gastric cancer. Hepatogastroenterology, 48(40), 1199-1201. Fujiwara, N., & Kobayashi, K. (2005). Macrophages in inflammation. Curr Drug Targets Inflamm Allergy, 4(3), 281-286. Gakis, G. (2014). The role of inflammation in bladder cancer. Adv Exp Med Biol, 816, 183-196. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140(6), 883-899. Irshad, S., & Abate-Shen, C. (2013). Modeling prostate cancer in mice: something old, something new, something premalignant, something metastatic. Cancer Metastasis Rev, 32(1-2), 109-122. Janeway, C.A.Jr, P. Travers, M. Walport, et al. (2001). Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science. Priciples of innate and adaptive immunity. Available from: Janeway, C.A.Jr, P. Travers, M. Walport, et al. (2001). Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science. Chapter 10, Adaptive immunity to infection. Available from: Kang, J. J., Reiter, R. E., Steinberg, M. L., & King, C. R. (2015). Ultrasensitive prostate specific antigen after prostatectomy reliably identifies patients requiring postoperative radiotherapy. J Urol, 193(5), 1532-1538. Killian, C. S., Corral, D. A., Kawinski, E., & Constantine, R. I. (1993). Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-beta and a proteolytic modulation of cell adhesion receptors. Biochem Biophys Res Commun, 192(2), 940-947. Kim, D. W., Min, H. S., Lee, K. H., Kim, Y. J., Oh, D. Y., Jeon, Y. K. Heo, D. S. (2008). High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. Br J Cancer, 98(6), 1118-1124. Klein-Schneegans, A. S., Kuntz, L., Fonteneau, P., & Loor, F. (1989). Serum concentrations of IgM, IgG1, IgG2b, IgG3 and IgA in C57BL/6 mice and their congenics at the lpr (lymphoproliferation) locus. J Autoimmun, 2(6), 869-875. Koh, T. J., & DiPietro, L. A. (2011). Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med, 13, e23. Lai, C. S., Li, S., Miyauchi, Y., Suzawa, M., Ho, C. T., & Pan, M. H. (2013). Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors. Food Funct, 4(6), 944-949. Li, C. J., Liao, W. T., Wu, M. Y., & Chu, P. Y. (2017). New Insights into the Role of Autophagy in Tumor Immune Microenvironment. Int J Mol Sci, 18(7). Li, L., Xu, L. J., Ma, G. Z., Dong, Y. M., Peng, Y., & Xiao, P. G. (2013). The large-leaved Kudingcha (Ilex latifolia Thunb and Ilex kudingcha C.J. Tseng): a traditional Chinese tea with plentiful secondary metabolites and potential biological activities. J Nat Med, 67(3), 425-437. Liu, Q., Tong, D., Liu, G., Gao, J., Wang, L. A., Xu, J., Jiang, J. (2018). Metformin inhibits prostate cancer progression by targeting tumor-associated inflammatory infiltration. Clin Cancer Res. Malejko, J., Nalewajko-Sieliwoniuk, E., Nazaruk, J., Sinilo, J., & Kojlo, A. (2014). Determination of the total polyphenolic content in Cirsium palustre (L.) leaves extracts with manganese(IV) chemiluminescence detection. Food Chem, 152, 155-161. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436-444. Maru, G. B., Gandhi, K., Ramchandani, A., & Kumar, G. (2014). The role of inflammation in skin cancer. Adv Exp Med Biol, 816, 437-469. Meng, Q., Liu, Z., Rangelova, E., Poiret, T., Ambati, A., Rane, L. Maeurer, M. J. (2016). Expansion of Tumor-reactive T Cells From Patients With Pancreatic Cancer. J Immunother, 39(2), 81-89. Pezaro, C., Woo, H. H., & Davis, I. D. (2014). Prostate cancer: measuring PSA. Intern Med J, 44(5), 433-440. Pogrebniak, H. W., Prewitt, T. W., Matthews, W. A., & Pass, H. I. (1991). Tumor necrosis factor-alpha alters response of lung cancer cells to oxidative stress. J Thorac Cardiovasc Surg, 102(6), 904-907. Rakoff-Nahoum, S. (2006). Why cancer and inflammation? Yale J Biol Med, 79(3-4), 123-130. Romagnani, S. (1999). Th1/Th2 cells. Inflamm Bowel Dis, 5(4), 285-294. Sakaue, G., Hiroi, T., Nakagawa, Y., Someya, K., Iwatani, K., Sawa, Y. Kiyono, H. (2003). HIV mucosal vaccine: nasal immunization with gp160-encapsulated hemagglutinating virus of Japan-liposome induces antigen-specific CTLs and neutralizing antibody responses. J Immunol, 170(1), 495-502. Schmidt, A., Oberle, N., Weiss, E. M., Vobis, D., Frischbutter, S., Baumgrass, R. Krammer, P. H. (2011). Human regulatory T cells rapidly suppress T cell receptor-induced Ca(2+), NF-kappaB, and NFAT signaling in conventional T cells. Sci Signal, 4(204), ra90. Shacter, E., & Weitzman, S. A. (2002). Chronic inflammation and cancer. Oncology (Williston Park), 16(2), 217-226, 229; discussion 230-212. Sharpe, M., & Mount, N. (2015). Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech, 8(4), 337-350. Sheen-Chen, S. M., Chen, W. J., Eng, H. L., & Chou, F. F. (1997). Serum concentration of tumor necrosis factor in patients with breast cancer. Breast Cancer Res Treat, 43(3), 211-215. Silvestri, I., Cattarino, S., Agliano, A. M., Collalti, G., & Sciarra, A. (2015). Beyond the Immune Suppression: The Immunotherapy in Prostate Cancer. Biomed Res Int, 2015, 794968. Song, J. L., Qian, Y., Li, G. J., & Zhao, X. (2013). Anti-inflammatory effects of kudingcha methanol extract (Ilex kudingcha C.J. Tseng) in dextran sulfate sodium-induced ulcerative colitis. Mol Med Rep, 8(4), 1256-1262. Song, X., He, J., Xu, H., Hu, X., P., Wu, X., L., Wu, H., Q., Liu, L., Z., Liao, C., H., Zeng, Y., Li, Y., Hao, Y., Xu, C., S., Fan, L., Zhang, J., Zhang, H., J., He, Z., D. (2016). The antiviral effects of acteoside and the underlying IFN-γ-inducing action. Food Funct. 7(7), 3017-30. Sonja. (2008). Identification of novel target genes in different subtypes of cutaneous T-cell lymphoma. Helsinki University Biomedical Dissertations No. 105. Sonoshita, M., Takaku, K., Oshima, M., Sugihara, K., & Taketo, M. M. (2002). Cyclooxygenase-2 expression in fibroblasts and endothelial cells of intestinal polyps. Cancer Res, 62(23), 6846-6849. Stephan, C., Ralla, B., & Jung, K. (2014). Prostate-specific antigen and other serum and urine markers in prostate cancer. Biochim Biophys Acta, 1846(1), 99-112. Waters, J. P., Pober, J. S., & Bradley, J. R. (2013). Tumour necrosis factor and cancer. J Pathol, 230(3), 241-248. Wong, I. Y., He, Z. D., Huang, Y., & Chen, Z. Y. (2001). Antioxidative activities of phenylethanoid glycosides from Ligustrum purpurascens. J Agric Food Chem, 49(6), 3113-3119. Xu, H., Hu, M. B., Bai, P. D., Zhu, W. H., Liu, S. H., Hou, J. Y. Jiang, H. W. (2015). Proinflammatory cytokines in prostate cancer development and progression promoted by high-fat diet. Biomed Res Int, 249741. Yoshida, E., Ohmura, S., Sugiki, M., Maruyama, M., & Mihara, H. (1995). Prostate-specific antigen activates single-chain urokinase-type plasminogen activator. Int J Cancer, 63(6), 863-865. Zhang, J. M., & An, J. (2007). Cytokines, inflammation, and pain. Int Anesthesiol Clin, 45(2), 27-37. Zhao, X., Pang, L., Li, J., Song, J. L., & Qiu, L. H. (2014). Apoptosis inducing effects of Kuding tea polyphenols in human buccal squamous cell carcinoma cell line BcaCD885. Nutrients, 6(8), 3084-3100. Zhao, X., Song, J. L., Yi, R., Li, G., Sun, P., Park, K. Y., & Suo, H. (2018). Comparison of antioxidative effects of insect tea and its raw tea (Kuding Tea) polyphenols in Kunming mice. Molecules, 23(1). Zhu, F., Cai, Y. Z., Sun, M., Ke, J., Lu, D., & Corke, H. (2009). Comparison of major phenolic constituents and in vitro antioxidant activity of diverse Kudingcha genotypes from Ilex kudingcha, Ilex cornuta, and Ligustrum robustum. J Agric Food Chem, 57(14), 6082-6089. Zhu, K., Li, G., Sun, P., Wang, R., Qian, Y., & Zhao, X. (2014). In vitro and in vivo anti-cancer activities of Kuding tea (Ilex kudingcha C.J. Tseng) against oral cancer. Exp Ther Med, 7(3), 709-715.
苦丁茶 (Ilex kudingcha)為傳統天然保健飲品,具有抗氧化、抗發炎等功效。本研究室先前研究已發現苦丁茶甲醇萃取物在體外實驗中,具有免疫調節功效,且對於人列腺癌PC-3細胞有抗癌之潛力,然而,其在體內之免疫調節及抗前列腺癌效果仍不清楚,因此本研究以小鼠前列腺癌TRAMP-C1細胞進行動物體外及體內實驗,以評估苦丁茶甲醇萃取物之功效。在體外實驗模式,發現直接添加與癌症免疫療法模式下,適當濃度之苦丁茶甲醇萃取物對於小鼠前列腺癌TRAMP-C1細胞的生長有抑制效果。以不同濃度癌細胞注入皮下以建立皮下負載TRAMP-C1癌細胞之C57BL/6J雄鼠動物模式,結果發現,於皮下注射癌細胞,使C57BL/6J小鼠免疫反應傾向Th1免疫平衡;觀察小鼠腫瘤大小及腫瘤組織病理變化情形,建議以注射低濃度癌細胞 (5 × 104 cells/mouse) 經過30天之條件,最適合做為動物體內負載前列腺癌之實驗模式。
利用已建立的動物體內模式管餵苦丁茶甲醇萃取物4週,結果顯示管餵苦丁茶甲醇萃取物,使C57BL/6J雄鼠脾臟細胞及腹腔巨噬細胞細胞激素分泌,傾向抗發炎之免疫平衡。此外,苦丁茶甲醇萃取物可增加小鼠周邊血液淋巴世系細胞分布比率,增加其免疫能力。觀察腫瘤組織病理變化發現,給予苦丁茶甲醇萃取物能改善腫瘤惡化情形;癌症指標結果顯示,給予小鼠中劑量 (200 mg/kg b.w./day) 樣品能降低血清中TNF-α濃度,管餵中劑量、低劑量 (50 mg/kg b.w./day) 樣品可降低小鼠血清中前列腺癌專一性抗原PSA濃度。

Ilex kudingcha, serving as a traditional natural health drink, has antioxidant and anti-inflammatory effects etc. In our preliminary studies, Ilex kudingcha methanol extract (IKME) has immunomodulatory effects and anti-cancer potential for human prostate carcinoma PC-3 cells in vitro. However, immunomodulatory and anti-prostate cancer effects of IKME in vivo are still unclear. To unravel the puzzle, mouse prostate cancer TRAMP-C1 cells were used to investigate the effects of IKME in vitro and in vivo. In vitro, we found that IKME at an appropriate concentration had anti-cancer effects against the growth of TRAMP-C1 cells via either direct addition or cancer immunotherapy. To establish an animal model for evaluating IKME effects on TRAMP-C1 cells in vivo, C57BL/6J male mice were injected subcutaneously with different concentrations of TRAMP-C1 cells for different days. The results showed that C57BL/6J male mice subcutaneously loaded with TRAMP-C1 cells had Th1-inclination immune balance. Based on tumor sizes and pathological changes of tumor tissues in the experiment mice, it is recommended that C57BL/6J male mice that are subcutaneously injected with low dose cancer cells (5 × 104 cells/mouse) for 30 days is the most suitable animal model for subsequent experiments in vivo.
Using the established animal model, IKME was administered to the experiment animal by gavage for 4 weeks. It was found that IKME administration resulted in anti-inflammatory effects according to cytokine secretion profiles by splenocytes and peritoneal macrophages of C57BL/6J male mice subcutaneously loaded with TRAMP-C1 cancer cells, respectively. Besides, IKME administration increased the percentage of lymphoid lineage cells in peripheral blood, enhancing their immunity of the experiment animals. Observation of pathological changes in tumor tissues indicated that IKME might improve the status of tumor deterioration. Evaluation on carcinogenic markers showed that medium (200 mg/kg b.w./day ) doses of IKME administration reduced serum TNF-α concentration in the experiment mice. Medium and low dose (50 mg/kg b.w./day ) of IKME administration significantly lowered serum prostate cancer specific antigen (PSA) concentration.
In conclusion, IKME administration in vitro could inhibit the growth of mouse prostate cancer TRAMP-C1 cells through either direct addition or indirect immunotherapy. In vivo, IKME administration tended to have a Th2-inclination immune balance in C57BL/6J mice subcutaneously loaded TRAMP-C1 cancer cells. IKME administration reduced pro-inflammatory cytokine secretions in the body, but increased the distribution of peripheral blood lymphocytes. Furthermore, IKME administration might improve the necrotic status in tumor tissues via increasing the immunity of the experiment mice. IKME has the potential to resist prostate cancer in vitro and in vivo.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-30起公開。
Appears in Collections:食品暨應用生物科技學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105043308-1.pdf3.83 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.