Please use this identifier to cite or link to this item:
標題: 探討熱處理配合微生物發酵羽毛粉於肉雞之胺基酸可利用率
Study on the amino acids availability of feather meal processing by heat treatment and microbial fermentation in broiler
作者: 余綺榕
Chi-Rong Yu
關鍵字: 熱處理;微生物固態發酵;羽毛粉;胺基酸可利用率;heat treatment;microbial solid-stage fermentation;feather meal;apparent amino acid availability
引用: 姜瑞敏、王寶維、袁月蓮、高慶宵、王作忠。1991。羽毛粉加工工藝的改進及肉雞餵飼。瀋陽農學院學報。8: 151-153。 張鐵鷹、汪儆。2005。單胃動物體外消化模擬技術研究進展。動物營養學報。17: 1-8。 曾宥綋、楊秋忠。2012。菩提奇異球菌 (Deinococcus ficus) CC-ZG207之 羽毛分解液作為速效性液肥之研究。臺中區農業改良場研究彙報。115: 53-62。 盧福庄、張子儀、何廷。1986。雞飼料代謝能離體測定方法的研究。中國畜牧雜誌。6: 8-11。 Allure, N., D. N. Madhusudhan, and D. Agsar. 2015. Enhanced production, purification and characterization of alkaline keratinase from Streptomyces minutiscleroticus DNA38. Int. Lett. Nat. Sci. 43: 27-37. AOAC 988.15 Tryptophan in foods and food and feed ingredients, ion exchange chromatographic method. Babinszky, L., J. M. van der Meer, H. Boer, and L. A. den Hartog. 1990. An in-vitro method for prediction of the digestible crude protein content in pig feeds. J. Sci. Food Agric. 50: 173-178. Baker, D. H., R. C. Blitenthal, K. P. Boebel, G. L. Czarnecki, L. L. Southern, and G. M. Willis. 1981. Protein-amino acid evaluation of steam-processed feather meal. Poult. Sci. 60: 1865-1872. Bandegan, A., E. Kiarie, R. L. Payne, G. H. Crow, W. Guenter, and C. M. Nyachoti. 2010. Standardized ileal amino acid digestibility in dry-extruded expelled soybean meal, extruded canola seed-pea, feather meal, and poultry by-product meal for broiler chickens. Poult. Sci. 89: 2626-2633. Barbour, G. W., M. Werling, A. G.Yersin, and M. S. Lilburn. 2002. The effect of enzyme predigestion on the nutritional quality of prepressed turkey feather meal. Poult. Sci. 81: 1032-1037. Bedford, M. R., and H. L. Classen. 1993. An in vitro assay for prediction of broiler intestinal viscosity and growth when fed rye-based diets in the presence of exogenous enzymes. Poult. Sci. 72: 137-143. Belewu, M. A., A. R. Asafa, and F. O. Ogunleke. 2008. Processing of feather meal by solid state fermentation. Biotechnology, 7: 589-591. Bertsch, A., and N. Coello. 2005. A biotechnological process for treatment and recycling poultry feathers as a feed ingreditent. Bioresour. Technol. 96: 1703-1708. Bielorai, R., B. Iosif, H. Neumark, and E. Alumot. 1982. Low nutritional value of feather-meal protein for chicks. J. Nutr. 112: 249-254. Binkley, C. H., and O. R. Vasak. 1951. Friable meal produced from feathers. American egg poultry review. 68: 12. Błyskal, B. 2009. Fungi utilizing keratinous substrates. Int. Biodeter. Biodegr. 63: 631-653. Brandelli, A., D. J. Daroit, A. Riffel. 2010. Biochemical features of microbial keratinases and production and applications. Appl. Microbiol. Biotechnol. 85: 1735-1750. Călin, M., D. Constantinescu-Aruxandei, E. Alexandrescu, I. Răut, M. B. Doni, M. L. Arsene, F. Oancea, L. Jecu, and V. Lazăr. 2017. Degradation of keratin substrates by keratinolytic fungi. Electron. J. Biotechnol. 28: 101-112. Chang, J., Q. Yin, P. Wang, W. Wang, R. Zuo, Q. Zheng, and J. Liu. 2012. Effect of fermented protein feedstuffs on pig production performance, nutrient digestibility, and fecal microbes. Turk. J. Vet. Anim. Sci. 36: 143-151. Chen, H., F. Rao, X. Shang, D. Zhang, and I. Hagiwara. 2013. Biomimetic drag reduction study on herringbone riblets of bird feather. J. Bionic Eng. 10: 341-349. Coward-Kelly, G., V. S. Chang, F. K. Agbogbo, and M. T. Holtzapple. 2006. Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1. Chicken feathers. Bioresour. Technol. 97: 1337-1343. Daroit, D. J., and A. Brandelli. 2014. A current assessment on the production of bacterial keratinases. Crit. Rev. Biotechnol. 34: 372-384. Draper, C. I. 1944. The nutritive value of corn oil meal and feather proteins. Iowa Agr. Expt. Sta. Res. Bul. 326. Eggum, B. O. 1970. Evalution of protein quality of feather meal under different treatments. Acta Agric. Scand. 20: 230-234. Fraser, R. D. B., and D. A. D. Parry. 2008. Molecular packing in the feather keratin filament. J. Struct. Biol. 162: 1-13. Garcia, A. R., A. B. Batal, and N. M. Dale. 2007. A comparison of methods to determine amino acid digestibility of feed ingredients for chickens. Poult. Sci. 86: 94-101. Chen, C. C., Y. C. Shih, W. S. Chiou, and B. Yu. 2010. Evaluating nutritional quality of single stage- and stage-fermented soybean meal. Asian Aust. J. Anim. Sci. 23: 598-606. Chou, C. H., S. Y. Wang, Y. T. Lin, and Y. C. Chen. 2014. Antioxidant activities of chicken liver hydrolysates by pepsin treatment. Int. J. Food Sci. Technol. 49: 1654-1662. Clunies, S. L. 1984. In vitro estimation of dry matter and crude protein digestibility. Poult. Sci. 63: 89-96. Gopinath, S. C. B., P. Anbu, T. Lakshmipriya, T. H. Tang, Y. Chen, U. Hashim, A. R. Ruslinda, and M. K. Md. Arshad. 2015. Biotechnological aspects and perspective of microbial keratinase production Biomed Res. Int. 2015: 1-10. Grazziotin, A., F. A. Pimentel, E. V. de Jong, and A. Brandelli. 2006. Nutritional improvement of feather protein by treatment with microbial keratinase. Anim. Feed Sci. Technol. 126: 135-144. Grazziotin, A., F. A. Pimentel, E. V. de Jong, and A. Brendelli. 2008. Poultry feather hydrolysate as a protein source for growing rats. Braz. J. Vet. Res. Anim. Sci. 45: 61-67. Guo, G., J. Chu, J. G. Wang, Q. X. He, and K. C. Liu. 2013. A two-step biotechnological process for improving nutrition value of feather meal by Bacillus licheniformis S6. J. Northeast Agric. Univ. 20: 71-77. Gupta, R., and P. Ramnani. 2006. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70: 21-33. Gupta, R., R. Sharma, and Q. K. Beg. 2013. Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit. Rev. Biotechnol. 33: 216-228. Han, Y., and C. M. Parsons. 1991. Protein and amino acid quality of feather meals. Poult. Sci. 70: 812-822. Herzog, B., D. P. Overy, B. Haltli, and R. G. Kerr. 2016. Discovery of keratinases using bacteria isolated from marine environments. Syst. Appl. Microbiol. 39: 49-57. Horn, M. J., D. B. Jones, and S. J. Ringel. 1941. Isolation of a new sulfur-containing amino acid (lanthionine) from sodium carbonate-treated wool. J. Biol. Chem. 138: 141-149. Johnston, J., and C. N. Coon. 1979. A comparison of six protein quality assays using commercially available protein meals. Poult. Sci. 58: 919-927. Kim, S. M., M. Winegardner, and W. A. Dudley. 1980. Available sulfur amino acid content of commercial feather meals. Poult. Sci. 59: 1627-1628. Kim, W. K., and P. H. Patterson. 2000. Nutritional value of enzyme- or sodium hydroxide- treated feathers from dead hens. Poult. Sci. 79: 528-534. Kim, W. K., E. S. Lorenz, and P. H. Patterson. 2002. Effect of enzymatic and chemical treatments on feather solubility and digestibility. Poult. Sci. 81: 95-98. Laba, W., and A. Rodziewicz. 2014. Biodegradation of hard keratins by two Bacillus strains. Jundishapur J. Microbiol. 7: 1-7. Lange, L., Y. Huang, and P. K. Busk. 2016. Microbial decomposition of keratin nature‒a new hypothesis of industrial relevance. Appl. Microbiol. Biotechnol. 100: 2083-2096. Latshaw, J. D., N. Musharaf, and R. Retrum. 1994. Processing of feather meal to maximize its nutritional value for poultry. Anim. Feed Sci. Technol. 47: 179-188. Lingham-Soliar, T., R. H. C. Bonser, and J. Wesley-Smith. 2010. Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering. Proc. R. Soc. B. 277: 1161-1168. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275. Maderson, P. F., W. J. Hillenius, U. Hiller, and C. C. Dove. 2009. Towards a comprehensive model of feather regeneration. J. Morphol. 270: 1166-1208. Marcondes, N. R., C. L. Taira, D. C. Vandresen, T. I. E. Svidzinski, M. K. Kadowaki, and R. M. Peralta. 2008. New feather-degrading filamentous fungi. Microbial Ecology. 56: 13-17. Mazotto, A. M., R. R. R. Coelho, S. M. L. Cedrola, M. F. de Lima, S. Couri, E. P. de Souza, and A. B. Vermelho. 2011. Keratinase production by three Bacillus spp. Using feather meal and whole feather as substrate in a submerged fermentation. Enzyme Research. 2011: 1-7. McKittrick, J., P. Y. Chen, S. G. Bodde, W. Yang, E. E. Novitskaya, and M. A. Meyers. 2012. The structure, functions, and mechanical properties of keratin. JOM. 64: 449-468. Molyneux, G. 1959. The digestion of wool by a keratinolytic Bacillus. Aust. J. Biol. Sci. 12: 274-281. Moritz, J. S., and J. D. Latshaw. 2001. Indicators of nutritional value of hydrolyzed feather meal. Poult. Sci. 80: 79-86. Mukesh Kumar, A. S. Lavanya, P. Priya, A. Immaculate Nancy Rebecca, M. D. Balakunaran and P. T. Kalaichelvan. 2012. Production of feather protein concentrate from feathers by In vitro Enzymatic treatment, its biochemical characterization and antioxidant nature. Middle East J. Sci. Res. 11: 881-886. Naber, E. C., S. P. Touchburn, B. D. Barnett, and C. L. Morgan. 1961. Effects of processing methods and amino acid supplementation on dietary utilization of feather meal protein by chicks. Poult. Sci. 40: 1234-1245. Nagai, Y., and T. Nishikawa. 1970. Alkali solubilization of chick feather keratin. Agr. Biol. Chem. 34: 16-22. Nam, G. W., D. W. Lee, H. S. Lee, N. J. Lee, B. C. Kim, E. A. Choe, J. K. Hwang, M. T. Suhartono, and Y. R. Pyun. 2002. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538-547. Onifade, A. A., N. A. Al-Sane, A. A. Al-Musallam, and S. Al-Zarban. 1998. A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 66: 1-11. Pahm, A. A., C. S. Scherer, J. E. Pettigrew, D. H. Baker, C. H. Parsons, and H. H. Stein. 2009. Standardized amino acid digestibility in cecectomized roosters and lysine bioavailability in chicks fed distillers dried grains with solubles. Poult. Sci. 88: 571-578. Pan, L., X. K. Ma, H. L. Wang, X. Xu, Z. K. Zeng, Q. Y. Tian, P. F. Zhao, S. Zhang, Z. Y. Yang, and X. S. Piao. 2016. Enzymatic feather meal as an alternative animal protein source in diets for nursery pigs. Anim. Feed Sci. Technol. 212: 112-121. Papadopoulos, M. C. 1985. Amino acid content and protein solubility of feather meal as affected by different processing conditions. Neth. J. Agric. Sci. 33: 317-319. Papadopoulos, M. C., A. R. Elboushy, and E. H. Ketelaars. 1985. Effect of different processing conditions on amino acid digestibility of feather meal determined by chicken assay. Poult. Sci. 64: 1729-1741. Rai, S. K., R. Konwarh, and A. K. Mukherjee. 2009. Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochem. Eng. J. 45: 218-225. Rajagopal Rao, D., A. H. Ennor, and B. Thorpe. 1966. The occurrence of L-lanthionine in the amino-acid pool of insects. Biochem. Biophys. Res. Commun. 22: 163-168. Ramnani, P., and R. Gupta. 2007. Keratinases vis-á-vis conventional proteases and feather degradation. World J. Microbiol. Biotechnol. 23: 1537-1540. Ramnani, P., R. Singh, and R. Gupta. 2005. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol. 51: 191-196. Sakamoto, T. A. 1980. Estimation of in vitro digestibility with the laying hen by an in vitro method using the intestinal fluid of the pig. Br. J. Nutr. 43: 389-392. Selvam, K. 2012. Biochemical and molecular characterization of microbial keratinase and its remarkable applications. Int. J. Pharm. Biol. Sci. 3: 267-275. Sharma, R., and R. Gupta. 2012. Coupled action of γ-glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM. Bioresour. Technol. 120: 314-317. Simpson, R. J., R. N. Marjorie, and T. Y. Liu. 1976. Complete amino acid analysis of proteins from a single hydrolysate. J. Biol. Chem. 251: 1936-1940. Son, H. J., H. C. Park, H. S. Kim, and C. Y. Lee. 2008. Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol. Lett. 30: 461-465. Sullivan, T. W., and E. L. Stephenson. 1957. Effect of processing methods on the utilization hydrolyzed poultry feathers by growing chicks. Poultry Sci. 36: 361-365. Syed, D. G., J. C. Lee, W. J. Li, C. J. Kim, and D. Agsar. 2009. Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour. Technol. 100: 1868-1871. Teresa, K. K., and B. Justyna. 2011. Biodegradation of keratin waste: theory and practical aspects. Waste Manag. 31: 1689-1701. Tsuda, Y., and Y. Nomura. 2014. Properties of alkaline-hydrolyzed waterfowl feather keratin. Anim. Sci. J. 85: 180-185. Wang, X., and C. M. Parsons. 1996. Effect of processing systems on protein quality of feather meals and hog hair meals. Poult. Sci. 76: 491.496. Williams, C. M., C. G. Lee, J. D. Garlich, and J. C. H. Shih. 1991. Evaluation of a bacterial feather fermentation product, feather-lysate, as a feed protein. Poult. Sci. 70: 85-94. Yamamura, S., Y. Morita, Q. Hasan, K. Yokoyama, and E. Tamiya. 2002. Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem. Biophys. Res. Commun. 294: 1138-1143. Yan, F., J. J. Dibner, C. D. Knight, and M. Vazquez-Anon. 2017. Effect of carbohydrase and protease on growth performance and gut health of young broilers fed diets containing rye, wheat, and feather meal. Poult. Sci. 96: 817-828. Zaghloul, T. I., M. Al-Bahra, H. Al-Azmeh. 1998. Isolation, identification, and keratinolytic activity of several feather-degrading bacterial isolates. Appl. Biochem. Biotechnol. 72: 207-213. Zyla, K., D. R. Ledoux, A. Garcia, and T. Veum. 1995. An in vitro procedure for studying enzymic dephosphorylation of phytate in maize-soyabean feeds for turkey poults. Br. J. Nutr. 74: 3-17
羽毛中因含有高量的蛋白質,可作為動物飼糧之蛋白質來源。然而,其蛋白質主要以結構穩固的角蛋白組成,單胃動物之消化酵素無法有效將其分解。又因胺基酸組成不平衡,缺乏Lysine、Methionine和Histidine等必需胺基酸,在實際應用上受到限制。傳統上,利用高溫高壓水解、酸鹼水解或酵素水解法等加工處理方法以提高羽毛蛋白的可利用性。在商業加工上,為確保羽毛粉的製成率並縮短製程,而提高處理蒸氣壓或是增加酸鹼試劑之濃度與作用溫度等條件,使得部分胺基酸被破壞,因而限制羽毛粉在動物飼糧中的利用。本研究旨在利用熱處理配合微生物固態發酵,以改善羽毛粉之蛋白質品質,提升於動物飼糧的利用性。試驗一以實驗室篩選出具有分泌角蛋白酶能力之菌株: Bacillus subtilis F3及Bacillus amyloliquefaciens R3作為發酵使用菌株,並探討角蛋白酶生產之最適培養時間。菌株以含羽毛為基質之培養液培養一天後,羽毛重量損失率已達70.8%,酵素活性 (角蛋白酶: 122.9 KU/mL;蛋白酶: 17.3 U/mL)及活菌數 (108 cfu/mL)皆達到最高值。因此,乃以此生長與酵素活性最佳的狀態,作為羽毛固態發酵之接種液。試驗二為探討羽毛加工之條件。第一部分為熱處理條件測試,分別將羽毛以160˚C加熱1.5及3小時,再以微生物發酵處理後測定體外蛋白質消化率。顯示,160˚C加熱1.5及3小時之處理皆能有效改善發酵後羽毛之消化率 (p<0.05)。但1.5小時 (37.7%)與3小時 (40.8%)處理組之間則無顯著差異 (p>0.05),基於成本考量,選用前者作為後續發酵試驗之料。第二部分進行熱處理後羽毛於固態發酵條件之測試,探討不同含水量 (50、60、70%) (v/w)、接種菌量 (1、5、10%) (v/w) (108 cfu/mL)及發酵時間等條件,以TCA可溶性蛋白、硫氫基含量及體外蛋白質消化率作為最適發酵條件評定指標。結果顯示,熱處理後羽毛以含水量70%、接種1%菌液 (108 cfu/mL)條件下發酵,TCA可溶性蛋白及硫氫基含量皆較其他測試條件高,並在發酵第四天時,將體外蛋白質消化率提升至38.9%。試驗三乃以白肉雞進行羽毛粉表面胺基酸可利用率之測定。結果顯示,本試驗之羽毛處理方法平均可將胺基酸可利用率提升25.9%。綜合以上結果,將生羽毛經160˚C加熱1.5小時之熱處理後,以F3及R3菌株於70% (v/w)含水量、1% (v/w) (108 cfu/mL)接種量發酵,可有效改善羽毛粉於肉雞之胺基酸可利用率。

Poultry feather contains high amounts of protein that makes it represent potential alternative ingredients for animal feedstuffs. However, raw feathers are insoluble and very poorly digested by nonruminant animals due to the high proportion of keratin and the strong disulfide bonding. The imbalanced amino acids composition of feather (lack of Lys, Met and His) make feather meal be only part of complementary feed composition. The conventional industrial feather protein processing method is thermal pressure hydrolysis, chemical and enzymatic treatments. These converted method involving treatments under high temperature, pressure and chemical conditions make certain sensitive amino acids such as methionine, lysine and tryptophan loss. Considering the cost of steam treatment processing and its disadvantageous effects on quality of feather meal, processes by microbial fermentation is being developed as an alternative method. The aim of this study was to combine appropriate heated condition with microbial solid-state fermentation for improving the protein quality of feather meal. Experiment 1 was to induce microbial to produce keratinase in feather medium. The stains of Bacillus subtilis F3 and Bacillus amyloliquefaciens R3 with best production capacity of keratinase were been use in following test. The results showed that the strains cultivate in feather medium had reduced 70.8% of weight of feather, and produced keratinase: 122.9 KU/mL and protease: 17.3 U/mL after one day. Experiment 2 was to investigate the proper condition of processing of feather. In the test of heat treatment condition, the results showed that the in vitro protein digestibility of the feather meal treated with 160˚C, 90 (37.3%) or 180 minutes (40.8%) were significantly higher than untreated feather (24.0%). There was not obvious different with treating for 90 and 180 minutes. Therefore, 160˚C, 90 minutes was being use in following solid-state fermentation. The optimal moisture content (50, 60, 70%) and inoculum size (1, 5, 10%) (v/w) (108 cfu/mL)of solid-state fermentation were tested. The results showed the optimal moisture content and inoculum size for feather solid-state fermentation were 70% and 1%, respectively. The concentration of TCA soluble protein and free sulfhydryl groups, meaning the grade of feather protein degradation, were higher than the other moisture content and inoculation size. In vitro protein digestibility of fermented feather meal were 38.9% after fermenting for 4 days. In the last, apparent amino acid availability were determined in broiler. The results showed the processing approach used in this study could increase 25.9% of the apparent amino acid availability. In summary, raw feather processing by 160˚C, 90 minutes and fermenting by stains F3 and R3 in 1% (v/w) (108 cfu/mL) of inoculum size with 70% of the moisture content could improve the amino acid availability in broiler.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:動物科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-107-7103037003-1.pdf1.7 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.