Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98074
標題: 桑黃固態發酵麩皮於肉雞飼糧之應用
Solid state fermentation of wheat bran by Phellinus linteus applied in broiler diet
作者: 魏子翔
Tzu-Hsiang Wei
關鍵字: 桑黃;固態發酵;麩皮;抗氧化;白肉雞;Phellinus linteus;solid state fermentation;wheat bran;antioxidant;broiler
引用: 卯曉嵐。1999。中國大型真菌。鄭州:河南科學技術出版社。477-479。 戴玉成。2003。藥用擔子菌-鮑氏層孔菌 (桑黃) 的新認識。中草藥。34: 94。 郭俊麟。2012。固態發酵與深層培養桑黃菌Phellinus linteus萃取物抗氧化及抗腫瘤活性之研究。東海大學食品科學研究所碩士論文。 行政院農委會。2017。105年主要畜禽產品生產成本與收益分析統計年報。 陳啟禎。2009。桑黃抗癌第一名。元氣齋出版社。 楊筱冬、呂淑芳、陳孟堂、傅偉光。2006。利用HPLC分析食藥用菇類中腺苷之方法研究。台灣農業化學與食品科學。44: 339-344。 Ahmed, Y., M. H. Sohrab, S. M. Al-Reza, F. S. Tareq, C. M. Hasan, and M. A. Sattar. 2010. Antimicrobial and cytotoxic constituents from leaves of Sapium baccatum. Food Chem. Toxicol. 48: 549-552. Ajila, C. M., S. K. Brar, M. Verma, R. D. Tyagi, S. Godbout, and J. R. Valéro. 2012. Bio-processing of agro-byproducts to animal feed. Crit. Rev. Biotechnol. 32: 382-400. Akbarian, A., J. Michiels, J. Degroote, M. Majdeddin, A. Golian, and S. De Smet. 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 7: 37. Alemawor, F., E. O. K. Oddoye, V. P. Dzogbefia, J. H. Oldham, and A. Donkoh. 2010. Broiler performance on finisher diets containing different levels of either Pleurotus ostreatus-fermented dried cocoa pod husk or dried cocoa pod husk supplemented with enzymes. Trop. Anim. Health Prod. 42: 933-939. Altan, Ö., A. Pabuçcuoğlu, A. Altan, S. Konyalioğlu, and H. Bayraktar. 2003. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br. Poult. Sci. 44: 545-550. Alvira, P., E. Tomás-Pejó, M. Ballesteros, and M. J. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101: 4851-4861. Andersson, A. A. M., L. Dimberg, P. Åman, and R. Landberg. 2014. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 59: 294-311. Apprich, S., Ö. Tirpanalan, J. Hell, M. Reisinger, S. Böhmdorfer, S. Siebenhandl-Ehn, S. Novalin, and W. Kneifel. 2014. Wheat bran-based biorefinery 2: Valorization of products. LWT - Food Sci. Technol. 56: 222-231. Arantes, V., and B. Goodell. 2014. Current understanding of brown-rot fungal biodegradation mechanisms: A review. In Schultz, T. P., B. Goodell and D. D. Nicholas (Eds.), Deterioration and Protection of Sustainable Biomaterials (Vol. 1158, pp: 3-21). Washington D. C.: American Chemical Society. Arantes, V., J. Jellison, and B. Goodell. 2012. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl. Microbiol. Biotechnol. 94: 323-338. Armstrong, R. N. 1991. Glutathione S-transferases: reaction mechanism, structure, and function. Chem. Res. Toxicol. 4: 131-140. Baltina, L. A., O. B. Flekhter, L. R. Nigmatullina, E. I. Boreko, N. I. Pavlova, S. N. Nikolaeva, O. V. Savinova, and G. A. Tolstikov. 2003. Lupane triterpenes and derivatives with antiviral activity. Bioorg. Med. Chem. Lett. 13: 3549-3552. Bindels, L. B., N. M. Delzenne, P. D. Cani, and J. Walter. 2015. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 12: 303-310. Bishayee, A., S. Ahmed, N. Brankov, and M. Perloff. 2011. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci. 16: 980-996. Bomble, Y. J., C. Y. Lin, A. Amore, H. Wei, E. K. Holwerda, P. N. Ciesielski, B. S. Donohoe, S. R. Decker, L. R. Lynd, and M. E. Himmel. 2017. Lignocellulose deconstruction in the biosphere. Curr. Opin. Chem. Biol. 41: 61-70. Brewer, L. R., J. Kubola, S. Siriamornpun, T. J. Herald, and Y. C. Shi. 2014. Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chem. 152: 483-490. Brouns, F., Y. Hemery, R. Price, and N. M. Anson. 2012. Wheat aleurone: separation, composition, health aspects, and potential food use. Crit. Rev. Food Sci. Nutr. 52: 553-568. Chang, C. Y., M. Y. Lue, and T. M. Pan. 2005. Determination of adenosine, cordycepin and ergosterol contents in cultivated Antrodia camphorata by HPLC method. J. Food Drug Anal. 13: 338-342. Chaudière, J., and R. Ferrari-Iliou. 1999. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem. Toxicol. 37: 949-962. Chen, H., T. Tian, H. Miao, and Y. Y. Zhao. 2016. Traditional uses, fermentation, phytochemistry and pharmacology of Phellinus linteus: A review. Fitoterapia 113: 6-26. Chen, W., Y. Shen, H. Su, and X. Zheng. 2014. Hispidin derived from Phellinus linteus affords protection against acrylamide-induced oxidative stress in Caco-2 cells. Chem.-Biol. Interact. 219: 83-89. Choct, M., and G. Annison. 1992. The inhibition of nutrient digestion by wheat pentosans. Br. J. Nutr. 67: 123-132. Chung, Y. M., J. S. Kim, and Y. D. Yoo. 2006. A novel protein, Romo1, induces ROS production in the mitochondria. Biochem. Biophys. Res. Commun. 347: 649-655. Conner, E. M., and M. B. Grisham. 1996. Inflammation, free radicals, and antioxidants. Nutrition 12: 274-277. Dalonso, N., G. H. Goldman, and R. M. M. Gern. 2015. β-(1→3),(1→6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons. Appl. Microbiol. Biotechnol. 99: 7893-7906. Dashtban, M., H. Schraft, T. A. Syed, and W. Qin. 2010. Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 1: 36-50. Davies, K. J. 1995. Oxidative stress: the paradox of aerobic life. Biochem. Soc. Symp. 61: 1-31. Dhakad, A., A. K. Garg, P. Singh, and D. K. Agrawal. 2002. Effect of replacement of maize grain with wheat bran on the performance of growing lambs. Small Ruminant Res. 43: 227-234. Dinis, T. C. P., V. M. C. Madeira, and L. M. Almeida. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161-169. Dizdaroglu, M. 2012. Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Lett. 327: 26-47. Dröge, W. 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82: 47-95. DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. Ellis, N. R., and H. R. Bird. 1951. Byproducts as feed for livestock. In Stefferud, A. (Ed.), The yearbook of agriculture (Vol. 1951, pp: 851-862): U.S. Dept. of Agriculture. Elstner, E. F. 1991. Oxygen radicals--biochemical basis for their efficacy. Klin. Wochenschr. 69: 949-956. Eltzschig, H. K. 2009. Adenosine: an old drug newly discovered. Anesthesiology 111: 904-915. Eriksson, K. E., and S. G. Hamp. 1978. Regulation of Endo‐1,4‐β‐glucanase Production in Sporotrichum pulverulentum. Eur. J. Biochem. 90: 183-190. Etim, N. N., M. E. Williams, E. I. Evans, and E. E. A. Offiong. 2013. Physiological and Behavioural Responses of Farm Animals to Stress: Implications to Animal Productivity. American journal of advanced agricultural research 1: 53-61. Fan, L., H. Pan, A. Thomaz Soccol, A. Pandey, and C. Soccol. 2006. Advances in mushroom research in the last decade. Food Technol. Biotechnol. 44: 303-311. Farinas, C. S. 2015. Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew. Sust. Energ. Rev. 52: 179-188. Ferreira, C. F. R. I., B. Lillian, and M. V. A. Rui. 2009. Antioxidants in wild mushrooms. Curr. Med. Chem. 16: 1543-1560. Freeman, B. M. 1987. The stress syndrome. Worlds Poult. Sci. J. 43: 15-19. Fulda, S. 2009. Betulinic acid: A natural product with anticancer activity. Mol. Nutr. Food Res. 53: 140-146. Giannenas, I., I. S. Pappas, S. Mavridis, G. Kontopidis, J. Skoufos, and I. Kyriazakis. 2010. Performance and antioxidant status of broiler chickens supplemented with dried mushrooms (Agaricus bisporus) in their diet. Poult. Sci. 89: 303-311. Giavasis, I. 2014. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr. Opin. Biotechnol. 26: 162-173. Gilbertson, R. L. 1980. Wood-rotting fungi of North America. Mycologia 72: 1-49. Goodell, B., Y. Qian, and J. Jellison. 2008. Fungal decay of wood: soft rot—brown rot—white rot. In Schultz, T. P., H. Militz, M. H. Freeman, B. Goodell and D. D. Nicholas (Eds.), Development of Commercial Wood Preservatives (Vol. 982, pp: 9-31): American Chemical Society. Goyal, R., and R. Grewal. 2014. A study on cholesterol lowering effect of Pleurotus Sajor-caju mushroom in hypercholesterolemic rats. Annals. Food Science and Technology 15: 92-97. Grasser, L. A., J. G. Fadel, I. Garnett, and E. J. DePeters. 1995. Quantity and economic importance of nine selected by-products used in california dairy rations. J. Dairy Sci. 78: 962-971. Gyamfi, M. A., M. Yonamine, and Y. Aniya. 1999. Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol. 32: 661-667. Hölker, U., M. Höfer, and J. Lenz. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175-186. Ha, J. K., S. W. Kim, and W. Y. Kim. 1996. Use of agro-industrial by-products as animal feeds in Korea. Taipei, Taiwan: ASPAC Food & Fertilizer Technology Center. Halliwell, B., J. M. Gutteridge, and C. E. Cross. 1992. Free radicals, antioxidants, and human disease: where are we now? J. Lab. Clin. Med. 119: 598-620. Halliwell, B., and M. Whiteman. 2004. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br. J. Pharmacol. 142: 231-255. Harada, T., K. Hasumi, and A. Endo. 1998. Induction of low-density lipoprotein catabolism in Hep G2 cells by a fungal sesquiterpene ester, FR111142. Biochem. Biophys. Res. Commun. 251: 830-834. Hatakka, A., and K. E. Hammel. 2011. Fungal biodegradation of lignocelluloses. In Hofrichter, M. (Ed.), Industrial Applications (pp: 319-340). Berlin, Heidelberg: Springer Berlin Heidelberg. Higuchi, K., Y. Yoda, K. Amagase, S. Kato, S. Tokioka, M. Murano, K. Takeuchi, and E. Umegaki. 2009. Prevention of NSAID-induced small intestinal mucosal injury: prophylactic potential of lansoprazole. J. Clin. Biochem. Nutr. 45: 125-130. Hossain, K., C. Ulven, K. Glover, F. Ghavami, S. Simsek, M. S. Alamri, A. Kumar, M. Mergoum, A. Goyal, and A. Kharabian. 2013. Interdependence of cultivar and environment on fiber composition in wheat bran. Aust. J. Crop Sci. 7: 525-531. Howard, R. L., E. Abotsi, E. Jansen van Rensburg, and S. Howard. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 2: 602-619. Hsieh, P. W., J. B. Wu, and Y. C. Wu. 2013. Chemistry and biology of Phellinus linteus. BioMedicine 3: 106-113. Hu, S. H., Z. C. Liang, Y. C. Chia, J. L. Lien, K. S. Chen, M. Y. Lee, and J. C. Wang. 2006. Antihyperlipidemic and antioxidant effects of extracts from Pleurotus citrinopileatus. J. Agric. Food. Chem. 54: 2103-2110. Huang, B. H., K. H. Yung, and S. T. Chang. 1985. The sterol composition of Volvariella volvacea and other edible mushrooms. Mycologia 77: 959-963. Huang, G. J., S. S. Huang, and J. S. Deng. 2012. Anti-Inflammatory Activities of Inotilone from Phellinus linteus through the Inhibition of MMP-9, NF-κB, and MAPK Activation In Vitro and In Vivo. PLoS One 7: e35922. Iles, K. E., and R. M. Liu. 2005. Mechanisms of glutamate cysteine ligase (GCL) induction by 4-hydroxynonenal. Free Radic. Biol. Med. 38: 547-556. Inoue, N., M. Inafuku, B. Shirouchi, K. Nagao, and T. Yanagita. 2013. Effect of Mukitake mushroom (Panellus serotinus) on the pathogenesis of lipid abnormalities in obese, diabetic ob/ob mice. Lipids Health Dis. 12: 18.  JøRgensen, H., X. Q. Zhao, K. E. B. Knudsen, and B. O. Eggum. 1996. The influence of dietary fibre source and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. Br. J. Nutr. 75: 379-395. Javed, M., S. Zahoor, S. Shafaat, I. Mehmooda, A. Gul, H. Rasheed, A. Imran Bukhari, N. Aftab, and I. Haq. 2012. Wheat bran as a brown gold: Nutritious value and its biotechnological applications. Afr. J. Microbiol. Res. 6: 724-733. Jung, J. Y., I. K. Lee, S. J. Seok, H. J. Lee, Y. H. Kim, and B. S. Yun. 2008. Antioxidant polyphenols from the mycelial culture of the medicinal fungi Inonotus xeranticus and Phellinus linteus. J. Appl. Microbiol. 104: 1824-1832. Katina, K., A. Laitila, R. Juvonen, K. H. Liukkonen, S. Kariluoto, V. Piironen, R. Landberg, P. Åman, and K. Poutanen. 2007. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol. 24: 175-186. Kerr, B. J., and G. C. Shurson. 2013. Strategies to improve fiber utilization in swine. J. Anim. Sci. Biotechnol. 4: 11. Kim, B. C., J. W. Choi, H. Y. Hong, S. A. Lee, S. Hong, E. H. Park, S. J. Kim, and C. J. Lim. 2006. Heme oxygenase-1 mediates the anti-inflammatory effect of mushroom Phellinus linteus in LPS-stimulated RAW264.7 macrophages. J. Ethnopharmacol. 106: 364-371. Kim, B. C., W. K. Jeon, H. Y. Hong, K. B. Jeon, J. H. Hahn, Y. M. Kim, S. Numazawa, T. Yosida, E. H. Park, and C. J. Lim. 2007a. The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCδ/Nrf2/ARE signaling to up-regulation of heme oxygenase-1. J. Ethnopharmacol. 113: 240-247. Kim, G. Y., G. S. Choi, S. H. Lee, and Y. M. Park. 2004. Acidic polysaccharide isolated from Phellinus linteus enhances through the up-regulation of nitric oxide and tumor necrosis factor-α from peritoneal macrophages. J. Ethnopharmacol. 95: 69-76. Kim, H. G., D. H. Yoon, W. H. Lee, S. K. Han, B. Shrestha, C. H. Kim, M. H. Lim, W. Chang, S. Lim, S. Choi, W. O. Song, J. M. Sung, K. C. Hwang, and T. W. Kim. 2007b. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-κB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J. Ethnopharmacol. 114: 307-315. Kim, H. M., S. B. Han, G. T. Oh, Y. H. Kim, D. H. Hong, N. D. Hong, and I. D. Yoo. 1996. Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus. Int. J. Immunopharmacol. 18: 295-303. Kirk, T. K., and E. B. Cowling. 1984. Biological decomposition of solid wood. In Rowell, R. (Ed.), The Chemistry of Solid Wood (Vol. 207, pp: 455-487). Washington D. C.: American Chemical Society. Koutrotsios, G., K. C. Mountzouris, I. Chatzipavlidis, and G. I. Zervakis. 2014. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi – Assessment of their effect on the final product and spent substrate properties. Food Chem. 161: 127-135. Kozarski, M., A. Klaus, D. Jakovljevic, N. Todorovic, J. Vunduk, P. Petrović, M. Niksic, M. Vrvic, and L. van Griensven. 2015. Antioxidants of edible mushrooms. Molecules 20: 19489-19525. Krishna, C. 2005. Solid-state fermentation systems—an overview. Crit. Rev. Biotechnol. 25: 1-30. Kruidenier, L., and H. W. Verspaget. 2002. Oxidative stress as a pathogenic factor in inflammatory bowel disease - radicals or ridiculous? Aliment. Pharmacol. Ther. 16: 1997-2015. Kujala, T. S., J. M. Loponen, K. D. Klika, and K. Pihlaja. 2000. Phenolics and betacyanins in red beetroot (Beta vulgaris) root:  distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food. Chem. 48: 5338-5342. Kumar, A. K., and S. Sharma. 2017. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4: 7. Kumar, B., A. Manuja, and P. Aich. 2012. Stress and its impact on farm animals. Front. Biosci. (Elite Ed) 4: 1759-1767. Kuo, C. F., C. H. Hsieh, and W. Y. Lin. 2011. Proteomic response of LAP-activated RAW 264.7 macrophages to the anti-inflammatory property of fungal ergosterol. Food Chem. 126: 207-212. Lara, L. J., and M. H. Rostagno. 2013. Impact of heat stress on poultry production. Animals (Basel) 3: 356-369. Laufenberg, G., B. Kunz, and M. Nystroem. 2003. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 87: 167-198. Layland, J., D. Carrick, M. Lee, K. Oldroyd, and C. Berry. 2014. Adenosine: physiology, pharmacology, and clinical applications. JACC-Cardiovasc. Interv. 7: 581-591. Lee, T. T., J. Y. Ciou, C. J. Chiang, Y. P. Chao, and B. Yu. 2012. Effect of Pleurotus eryngii stalk residue on the oxidative status and meat quality of broiler chickens. J. Agric. Food. Chem. 60: 11157-11163. Liang, C. H., J. L. Syu, and J. L. Mau. 2009. Antioxidant properties of solid-state fermented adlay and rice by Phellinus linteus. Food Chem. 116: 841-845. Liaw, C. C., Y. C. Chen, G. J. Huang, Y. C. Tsai, S. C. Chien, J. H. Wu, S. Y. Wang, L. K. Chao, P. J. Sung, H. C. Huang, and Y. H. Kuo. 2013. Anti-inflammatory Lanostanoids and Lactone Derivatives from Antrodia camphorata. J. Nat. Prod. 76: 489-494. Liguori, R., and V. Faraco. 2016. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy. Bioresour. Technol. 215: 13-20. Lin, W. C., J. S. Deng, S. S. Huang, S. H. Wu, C. C. Chen, W. R. Lin, H. Y. Lin, and G. J. Huang. 2017. Anti-inflammatory activity of Sanghuangporus sanghuang mycelium. Int. J. Mol. Sci. 18: 347. Lindberg, J. E. 2014. Fiber effects in nutrition and gut health in pigs. Journal of animal science and biotechnology 5: 15. Lonsane, B. K., N. P. Ghildyal, S. Budiatman, and S. V. Ramakrishna. 1985. Engineering aspects of solid state fermentation. Enzyme Microb. Technol. 7: 258-265. Lourenco, J. M., N. DiLorenzo, A. M. Stelzleni, J. R. Segers, and R. L. Stewart. 2016. Use of by-product feeds to decrease feed cost while maintaining performance of developing beef bulls. Prof. Anim. Sci. 32: 287-294. Lu, Y. F., and C. F. Chiang. 2001. Effect of dietary cholesterol and fat levels on lipid peroxidation and the activities of antioxidant enzymes in rats. Int. J. Vitam. Nutr. Res. 71: 339-346. Lu, Z. M., J. Y. Lei, H. Y. Xu, J. S. Shi, and Z. H. Xu. 2011. Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques. Appl. Microbiol. Biotechnol. 92: 371-379. Martínez, Á. T., M. Speranza, F. J. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M. J. Martínez, A. Gutiérrez, and J. C. del Río. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8: 195-204. Matcham, S. E., B. R. Jordan, and D. A. Wood. 1985. Estimation of fungal biomass in a solid substrate by three independent methods. Appl. Microbiol. Biotechnol. 21: 108-112. Merali, Z., S. R. A. Collins, A. Elliston, D. R. Wilson, A. Käsper, and K. W. Waldron. 2015. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnol. Biofuels 8: 23. Mester, T., E. Varela, and M. Tien. 2004. Wood degradation by brown-rot and white-rot fungi. In Kück, U. (Ed.), Genetics and Biotechnology (Vol. 2, pp: 355-368). Berlin, Heidelberg: Springer Berlin Heidelberg. Mitchell, D. A., M. Berovic, and N. Krieger. 2002. Overview of solid state bioprocessing. In El-Gewely, M. R. (Ed.), Biotechnology annual review (Vol. 8, pp: 183-225): Elsevier Science. Mittal, M., M. R. Siddiqui, K. Tran, S. P. Reddy, and A. B. Malik. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20: 1126-1167. Moberg, G. P. 2000. Biological response to stress: implications for animal welfare. In Moberg, G. P. and J. A. Mench (Eds.), The biology of animal stress: basic principles and implications for animal welfare (pp: 1-21). Oxfordshire, UK: CABI publishing. Mokoka, T. A., L. J. McGaw, L. K. Mdee, V. P. Bagla, E. O. Iwalewa, and J. N. Eloff. 2013. Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of Maytenus undata (Celastraceae). BMC Complement. Altern. Med. 13: 111. Montagne, L., J. R. Pluske, and D. J. Hampson. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108: 95-117. Mtui, G. Y. S. 2009. Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr. J. Biotechnol. 8: 1398-1415. Na, H. K., and Y. J. Surh. 2008. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol. 46: 1271-1278. Nair, S., W. Li, and A. N. T. Kong. 2007. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol. Sin. 28: 459. Neifar, M., A. Jaouani, A. Ayari, O. Abid, H. B. Salem, A. Boudabous, T. Najar, and R. E. Ghorbel. 2013. Improving the nutritive value of Olive Cake by solid state cultivation of the medicinal mushroom Fomes fomentarius. Chemosphere 91: 110-114. Nowak, R., N. Nowacka-Jechalke, M. Juda, and A. Malm. 2018. The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth. Eur. J. Nutr. 57: 1511-1521. Onipe, O. O., A. I. O. Jideani, and D. Beswa. 2015. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 50: 2509-2518. Oyaizu, M. 1986. Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315. Pérez, J., J. Muñoz-Dorado, T. de la Rubia, and J. Martínez. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5: 53-63. Pandey, A. 2003. Solid-state fermentation. Biochem. Eng. J. 13: 81-84. Pandey, A., P. Selvakumar, C. R. Soccol, and P. Nigam. 1999. Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162. Park, B. J., Y. S. Lim, H. J. Lee, W. S. Eum, J. Park, K. H. Han, S. Y. Choi, and K. S. Lee. 2009. Anti-oxidative effects of Phellinus linteus and red ginseng extracts on oxidative stress-induced DNA damage. BMB Rep. 42: 500-505. Park, J., K. A. Kang, R. Zhang, M. J. Piao, S. Park, J. S. Park, Y. K. Kim, M. C. Rho, H. S. Lee, and J. W. Hyun. 2006. Antioxidant activity of water extract from the cultured mycelia of Phellinus baumii. Cancer Prev. Res. 11: 329-335. Patel, S. 2015. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. J. Funct. Food. 14: 255-269. Postemsky, P. D., M. A. Bidegain, R. Gonzalez-Matute, N. D. Figlas, and M. A. Cubitto. 2017. Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum. Bioresour. Technol. 231: 85-93. Pourabedin, M., and X. Zhao. 2015. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett. 362: fnv122. Prückler, M., S. Siebenhandl-Ehn, S. Apprich, S. Höltinger, C. Haas, E. Schmid, and W. Kneifel. 2014. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Sci. Technol. 56: 211-221. Reddy, N., and Y. Yang. 2005. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 23: 22-27. Reis, F. S., J. C. M. Barreira, R. C. Calhelha, L. J. I. D. van Griensven, A. Ćirić, J. Glamočlija, M. Soković, and I. C. F. R. Ferreira. 2014. Chemical characterization of the medicinal mushroom Phellinus linteus (Berkeley & Curtis) Teng and contribution of different fractions to its bioactivity. LWT - Food Sci. Technol. 58: 478-485. Robinson, T., D. Singh, and P. Nigam. 2001. Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 55: 284-289. Rony, K. A., T. A. Ajith, N. Nima, and K. K. Janardhanan. 2014. Hypolipidemic activity of Phellinus rimosus against triton WR-1339 and high cholesterol diet induced hyperlipidemic rats. Environ. Toxicol. Pharmacol. 37: 482-492. Rubin, E. M. 2008. Genomics of cellulosic biofuels. Nature 454: 841-845. Sánchez, C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185-194. Salmon, D. N. X., M. R. Spier, C. R. Soccol, L. P. d. S. Vandenberghe, V. Weingartner Montibeller, M. C. J. Bier, and V. Faraco. 2014. Analysis of inducers of xylanase and cellulase activities production by Ganoderma applanatum LPB MR-56. Fungal Biol. 118: 655-662. Sarnklong, C., J. W. Cone, W. Pellikaan, and W. H. Hendriks. 2010. Utilization of rice straw and different treatments to improve its feed value for ruminants: a review. Asian Australas. J. Anim. Sci. 23: 680-692. Savory, J. G. 1954. Breakdown of timber by Ascomycetes and Fungi Imperfecti. Ann. Appl. Biol. 41: 336-347. Shamsi, I. H., N. Hussain, and L. Jiang. 2012. Agro-industrial by-products utilization in animal nutrition. In Gupta, S. K. (Ed.), Technological Innovations in Major World Oil Crops (Vol. 2, pp: 209-220). New York, NY: Springer New York. Shao, S., M. Hernandez, J. K. G. Kramer, D. L. Rinker, and R. Tsao. 2010. Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J. Agric. Food. Chem. 58: 11616-11625. Sharma, D. D., A. L. Joshi, J. B. Schiere, and M. N. M. Ibrahim. 1995. Treatment of crop residue: a review. In Singh, K. and J. B. Schiere (Eds.), Handbook for straw feeding systems : principles and applications with emphasis on Indian livestock production (pp: 263-270). New Delhi: Indo-Dutch Project on Bioconversion of Crop Residues. Sheehan, D., G. Meade, V. M. Foley, and C. A. Dowd. 2001. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360: 1-16. Shen, T., G. Wang, L. You, L. Zhang, H. Ren, W. Hu, Q. Qiang, X. Wang, L. Ji, Z. Gu, and X. Zhao. 2017. Polysaccharide from wheat bran induces cytokine expression via the toll-like receptor 4-mediated p38 MAPK signaling pathway and prevents cyclophosphamide-induced immunosuppression in mice. Food Nutr. Res. 61: 1344523. Shon, Y. H., and K. S. Nam. 2001. Antimutagenicity and induction of anticarcinogenic phase II enzymes by basidiomycetes. J. Ethnopharmacol. 77: 103-109. Shrivastava, B., P. Nandal, A. Sharma, K. K. Jain, Y. P. Khasa, T. K. Das, V. Mani, N. J. Kewalramani, S. S. Kundu, and R. C. Kuhad. 2012. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Bioresour. Technol. 107: 347-351. Silva, M., J. P. David, L. C. R. C. Silva, R. A. F. Santos, J. M. David, L. S. Lima, P. S. Reis, and R. Fontana. 2012. Bioactive oleanane, lupane and ursane triterpene acid derivatives. Molecules 17: 12197-12205. Singh, A. P., and T. Singh. 2014. Biotechnological applications of wood-rotting fungi: A review. Biomass Bioenerg. 62: 198-206. Singhania, R. R., A. K. Patel, C. R. Soccol, and A. Pandey. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44: 13-18. Smith, H., S. Doyle, and R. Murphy. 2015. Filamentous fungi as a source of natural antioxidants. Food Chem. 185: 389-397. Sniderman, A., and P. O. Kwiterovich. 2013. Update on the detection and treatment of atherogenic low-density lipoproteins. Curr. Opin. Endocrinol. Diabetes 20: 140-147. Soccol, C. R., E. S. F. d. Costa, L. A. J. Letti, S. G. Karp, A. L. Woiciechowski, and L. P. d. S. Vandenberghe. 2017. Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 1: 52-71. Song, Y. S., S. H. Kim, J. H. Sa, C. Jin, C. J. Lim, and E. H. Park. 2003. Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J. Ethnopharmacol. 88: 113-116. Suabjakyong, P., K. Nishimura, T. Toida, and L. J. L. D. Van Griensven. 2015. Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus igniarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7). Food Funct. 6: 2834-2844. Sun, Y., and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11. Surai, P. F. 2016. Antioxidant systems in poultry biology: superoxide dismutase. J. Anim. Res. Nutr. 1: 8. Surendra, K. C., and S. K. Khanal. 2015. Effects of crop maturity and size reduction on digestibility and methane yield of dedicated energy crop. Bioresour. Technol. 178: 187-193. Tahir, M. I., A. Khalique, T. Pasha, and J. Bhatti. 2002. Comparative evaluation of maize bran, wheat bran and rice bran on milk production of holstein friesian cattle. Int. J. Agric. Biol. 4: 559-560. Thannickal, V. J., and B. L. Fanburg. 2000. Reactive oxygen species in cell signaling. Am. J. Physiol.-Lung Cell. Mol. Physiol. 279: L1005-L1028. Thomas, L., C. Larroche, and A. Pandey. 2013. Current developments in solid-state fermentation. Biochem. Eng. J. 81: 146-161. van den Brink, J., and R. P. de Vries. 2011. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 91: 1477-1492. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597. van Wyk, J. P. H. 2001. Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol. 19: 172-177. Varzakas, T. 1998. Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochem. 33: 741-747. Villas-Bôas, S. G., E. Esposito, and D. A. Mitchell. 2002. Microbial conversion of lignocellulosic residues for production of animal feeds. Anim. Feed Sci. Technol. 98: 1-12. Wahlstrom, R. C., and G. W. Libal. 1980. Effect of distillers dried grains with solubles in pig starter diets. In South Dakota Swine Field Day Proceedings and Research Reports, No. 80-6 (pp: 14-16). Brookings: South Dakota State, Univ. Wang, X. M., J. Zhang, L. H. Wu, Y. L. Zhao, T. Li, J. Q. Li, Y. Z. Wang, and H. G. Liu. 2014a. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem. 151: 279-285. Wang, Z. B., J. J. Pei, H. L. Ma, P. F. Cai, and J. K. Yan. 2014b. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides. Carbohydr. Polym. 109: 49-55. Wu, C. S., Z. M. Lin, L. N. Wang, D. X. Guo, S. Q. Wang, Y. Q. Liu, H. Q. Yuan, and H. X. Lou. 2011. Phenolic compounds with NF-κB inhibitory effects from the fungus Phellinus baumii. Bioorg. Med. Chem. Lett. 21: 3261-3267. Xie, P. J., L. X. Huang, C. H. Zhang, and Y. L. Zhang. 2016. Nutrient assessment of olive leaf residues processed by solid‐state fermentation as an innovative feedstuff additive. J. Appl. Microbiol. 121: 28-40. Yacout, M. H. M. 2016. Anti-nutritional factors & its roles in animal nutrition. J. Dairy Vet. Anim. Res. 4: 00107. Yamin, S., M. Shuhaimi, A. Arbakariya, A. B. Fatimah, A. K. Khalilah, O. Anas, and A. M. Yazid. 2012. Effect of Ganoderma lucidum polysaccharides on the growth of Bifidobacterium spp. as assessed using real-time PCR. Int. Food Res. J. 19: 1199-1205. Yasuharu, Y., Y. Masami, and S. Kiyoshi. 2000. Antitumor promoting effect of an active component of polyporus, ergosterol and related compounds on rat urinary bladder carcinogenesis in a short-term test with concanavalin A. Biol. Pharm. Bull. 23: 1298-1302. Yilkal, T. 2015. Role of white rot fungi as a biological treatment of low quality animal feeds: review. Scholarly J. Agric. Sci. 5: 247-255. Yu, B. P. 1994. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74: 139-162. Zabel, R. A., F. F. Lombard, C. J. K. Wang, and F. Terracina. 1985. Fungi associated with decay in treated southern pine utility poles in the eastern United States. Wood Fiber Sci. 17: 75-91. Zanetti, F., M. Giacomello, Y. Donati, S. Carnesecchi, M. Frieden, and C. Barazzone-Argiroffo. 2014. Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells. Free Radic. Biol. Med. 76: 173-184. Zarghi, H., A. Golian, H. Kermanshahi, A. R. Raji, and A. R. Heravi. 2010. The effect of triticale and enzyme in finisher diet on performance, gut morphology and blood chemistry of broiler chickens. J. Anim. Vet. Adv. 9: 2305-2314. Zhang, H., J. Wang, Y. Liu, and B. Sun. 2015. Wheat bran feruloyl oligosaccharides modulate the phase II detoxifying/antioxidant enzymes via Nrf2 signaling. Int. J. Biol. Macromol. 74: 150-154. Zhang, J. J., Y. Li, T. Zhou, D. P. Xu, P. Zhang, S. Li, and H. B. Li. 2016. Bioactivities and health benefits of mushrooms mainly from China. Molecules 21: 938. Zhu, T., S. H. Kim, and C. Y. Chen. 2008. A medicinal mushroom: Phellinus Linteus. Curr. Med. Chem. 15: 1330-1335. Zou, X., X. Guo, and M. Sun. 2008. pH control strategy in a shaken minibioreactor for polysaccharide production by medicinal mushroom Phellinus linteus and its anti-hyperlipemia activity. Bioprocess Biosyst. Eng. 32: 277-281.
摘要: 
動物之生長或生產表現常受各式緊迫因子之影響,在飼養過程中減少因緊迫而帶來的負面效益為動物飼養的重要課題之一。本研究以具抗氧化及免疫調節功能之珍貴食藥用真菌-桑黃 (Phellinus linteus) 對麩皮進行固態發酵,探討其發酵產物對白肉雞生長表現、抗氧化能力及相關基因表現之影響。本研究共分為兩部分,第一部分旨在探討桑黃發酵麩皮之最適培養條件、代謝物成分含量及抗氧化特性分析。首先於水分添加量60% (v/w) 情況下,探討以燕麥及紅小麥作為菌酛基質對桑黃菌生長及代謝物產量之影響,接著探討不同水分添加量 (40%、60%及80%) 對於桑黃燕麥菌酛代謝物產量之影響。結果顯示,以燕麥作為菌酛基質可產生較紅小麥為多之麥角固醇 (42.2 ppm vs 37.6 ppm)、腺苷 (181.0 μg/g DW vs 152.9 μg/g DW) 及粗三萜類化合物 (8.91 mg OAE/g DW vs 4.43 mg OAE/g DW);調整水分添加量之結果仍是以60%桑黃燕麥菌酛 (P. linteus oat starter culture, OSC) 為最佳。進一步將OSC接種至麩皮,探討水分添加量及最適發酵天數。結果顯示,於50% 水分添加量下,培養18天之桑黃發酵麩皮 (P. linteus fermented wheat bran, FWB) 可獲得較高之麥角固醇 (31.9 ppm)、腺苷 (113.1 μg/g DW) 及粗三萜類化合物 (4.12 mg OAE/g DW) 產量。測定FWB之特性則發現桑黃之發酵作用可顯著降低麩皮所含之纖維含量並提高木聚糖酶 (Xylanase) 及甘露聚糖酶 (Mannanase) 之活性,機能性代謝物如粗多醣及總酚類化合物之含量亦顯著提升,此外FWB亦具有清除DPPH自由基、螯合亞鐵離子等抗氧化效果。第二部分則為探討FWB作為白肉雞飼糧時,對白肉雞生長表現、腸道菌相及抗氧化相關基因表現之影響,試驗將300隻1日齡公白肉雞 (Ross 308) 依平均體重逢機分配至五個處理組,分別為基礎飼糧 (Control) 及以5%麩皮 (WB)、10% WB、5% FWB 以及10% FWB取代基礎飼糧原料組,每處理3欄,每欄20隻,試驗期共35日。結果顯示,5% FWB處理組之全期飼料效率 (Feed conversion ratio, FCR) 顯著較Control組為低;10% WB處理組之全期FCR則顯著較Control組為高。腸道菌相之測定結果顯示,10% FWB處理組之迴腸乳酸菌群菌數 (8.94 Log CFU/g) 顯著較Control組 (8.35 Log CFU/g) 為高,而大腸桿菌群之菌數 (6.39 Log CFU/g) 則顯著較Control組 (7.21 Log CFU/g) 為低。於血液性狀之部分,以FWB部分取代白肉雞飼糧具有降低血清中低密度脂蛋白膽固醇 (Low-density lipoprotein cholesterol) 含量之效果,且顯著提升血清中超氧化物歧化酶 (Superoxide dismutase, SOD) 之活性,並減少丙二醛 (Malondialdehyde, MDA) 之生成。分析雞隻周邊血液單核球細胞 (Peripheral blood mononuclear cells, PBMCs) 之抗氧化相關基因及促細胞激素之表現時則發現,以FWB部分取代白肉雞之基礎飼糧可顯著提升抗氧化基因如Nrf2、HO-1、GST及GCLC之表現量,並具有降低促發炎細胞激素如NF-κB、IL-6、IL-1β及iNOS表現量之效果。綜上所述,經桑黃菌固態發酵之麩皮,可增加其中之二次代謝物含量,以5% 取代於肉雞飼糧中可改善肉雞之飼料效率及抗氧化基因表現情形,具應用於肉雞飼糧之潛力。

The growth or production performances of domestic animals were affected by plenty of stressors. Thus, reducing the negative effects caused by stress had been thought to be important. A precious edible medicinal fungus, Phellinus linteus, which had been reported to possess antioxidant and immunomodulating effects was used in this study to ferment wheat bran. The aim of present study is to investigate the effects of P. linteus fermented wheat bran (FWB) on growth performance, antioxidant activity and the antioxidant related gene expression of broiler chickens. There are two parts in this study, the first one was to investigate the optimum culture conditions, metabolites contents and antioxidant capacities of FWB. Firstly, P. linteus was inoculated to oat or wheat under 60% (v/w) moisture content to evaluate suitable substrate for starter culture. Secondly, the effect of different moisture content on the quantities of secondary metabolites of oat starter culture (OSC) was measured. As the results showed, P. linteus inoculated to oat could produce more ergosterol (42.2 ppm), adenosine (181.0 μg/g DW) and crude triterpenoids (8.91 mg OAE/g DW) contents than inoculated to wheat (37.62 ppm, 152.88 μg/g DW and 4.43 mg OAE/g DW, respectively). The results of different moisture content on OSC still revealed that 60% moisture content was the more outstanding one. Further, the optimum culture conditions of FWB was measured after inoculating OSC to wheat bran. The results showed that after 18d cultivation, FWB with 50% moisture content could produce higher ergosterol (31.9 ppm), adenosine (113.1 μg/g DW) and crude triterpenoids (4.12 mg OAE/g DW) contents. Besides, significantly lower neutral and acid detergent fiber contents and higher activities of xylanase and mannanase were observed in FWB than in wheat bran. The secondary metabolites, such as crude polysaccharides and total phenol contents, was significantly enhanced after P. linteus fermentation. Moreover, FWB showed the abilities of scavenging DPPH free radicals and chelating ferrous ions. The second part was to investigate the effects of FWB on broiler growth performance, intestinal microbiota, and antioxidant related gene expression. Three hundred d-old broiler chickens (Ross 308) were assigned into 5 groups fed control diets, and control diet replaced with 5% wheat bran (WB), 10% WB, 5% FWB and 10% FWB, respectively. Regarding the entire experimental period, broilers in the 5% FWB group demonstrated significantly lower feed conversion ratio (FCR) than control group, and the FCR of 10% WB group was significantly higher. Moreover, 10% FWB group showed significantly higher lactic acid bacteria (8.94 Log CFU/g) and lower coliform bacteria counts (6.39 Log CFU/g) in ileum than control group (8.35 Log CFU/g and 7.21 Log CFU/g). Conducting the blood characteristics, broilers fed FWB showed significantly lower low-density lipoprotein cholesterol (LDL-C) content. The superoxide dismutase activity in serum of FWB treatments was obviously increased, which showed an inhibition effect on the malondialdehyde production. Measuring the antioxidant-related genes and pro-inflammatory cytokines expression in broiler peripheral blood mononuclear cells (PBMCs) showed that partly replaced FWB into broiler diets enhanced the expression of antioxidant-related genes, such as Nrf2, HO-1, GST and GCLC, yet the pro-inflammatory cytokines expression, such as NF-κB, IL-6, IL-1β and iNOS decreased. As the results above, wheat bran fermented by P. linteus not only increased the contens of secondary metabolites, but also improved the growth performance and antioxidant capacity of broiler chickens in a favorable manner, further implied the potentiality to apply in animal feed industry.
URI: http://hdl.handle.net/11455/98074
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-22起公開。
Appears in Collections:動物科學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-107-7104037121-1.pdf2.18 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.