Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98148
DC FieldValueLanguage
dc.contributor楊德新zh_TW
dc.contributor.author張柏揚zh_TW
dc.contributor.authorBo-Yang Changen_US
dc.contributor.other森林學系所zh_TW
dc.date2019zh_TW
dc.date.accessioned2019-03-22T06:27:17Z-
dc.identifier.citation中華民國國家標準CNS 442(2012)木材之分類。經濟部標準檢驗局。 中華民國國家標準CNS 451(2013)木材密度試驗法。經濟部標準檢驗局。 中華民國國家標準CNS 452(2013)木材含水率試驗法。經濟部標準檢驗局。 中華民國國家標準CNS 453(2013)木材抗壓試驗法。經濟部標準檢驗局。 中華民國國家標準CNS 454(2013)木材抗彎試驗法。經濟部標準檢驗局。 中華民國國家標準CNS 455(2013)木材平行纖維方向剪力強度試驗法。經濟部標準檢驗局。 中華民國國家標準CNS 460(2013)木材硬度試驗法。經濟部標準檢驗局。 中華民國國家標準CNS 6717(2011)木材防腐劑之性能基準。經濟部標準檢驗局。 中華民國國家標準CNS 11031(2014)結構用集成材。經濟部標準檢驗局。 中華民國國家標準CNS 14630(2017)針葉樹結構用製材。經濟部標準檢驗局。 中華民國國家標準CNS 14631(2002)框組壁工法結構用製材。經濟部標準檢驗局。 中華民國國家標準CNS 14633(2002)框組壁工法結構用針葉樹製材之靜曲應力分等。經濟部標準檢驗局。 中華民國國家標準CNS 15697(2013)木材耐腐朽性試驗法。經濟部標準檢驗局。 中華民國國家標準CNS 15756(2014)木材抗白蟻性試驗法。經濟部標準檢驗局。 內政部營建署(2003)木構造建築物設計及施工技術規範。營建雜誌社。 王松永(1985)柳杉及杉木之材質與利用(Ⅰ)。林產工業4(4):79-88。 王松永、林振榮、施能毅(1991)杉木及柳杉造林木之原木品等與製材率之探討。林產工業10(4):1-22。 王松永(2012)酚樹脂處理木材之物理性質、耐腐及耐白蟻性探討。台大實驗林研究報告26(2):151-161。 王松永(2015)國產木竹材產地證明制度驗證與木竹製品之地產地消。木質建築19:65-79。 李志璇(2012)三種熱處理介質對孟宗竹基本性質之影響。國立中興大學森林學系碩士論文。 李佳如、張夆榕、林志憲、楊德新(2014) 35年生國產柳杉分等結構用材之機械性質評估。林產工業33(2):61-70。 李佳如、楊德新(2010) 應用非破壞技術評估杉木集成元之抗彎性質。林業研究季刊32(4):45-60。 李鴻麟、夏滄淇、許富蘭、林勝傑(2005)新型水溶性木材防腐藥劑對木材保存性與燃燒性之影響。台灣林業科學20(2):139-156。 邱立文、黃群修、吳俊奇、謝小恬(2015)第4次全國森林資源調查成果概要。台灣林業41(4):3-13。 邱志明、羅卓振南、林振榮(2000)修枝度對台灣杉造林木製材品質之影響。台灣林業科學15(3):399-409。 邱祈榮、林俊成、何幸耘(2012)REDD施行對台灣進口原木與製材衝擊之評估。中華林學季刊45(2):271-288。 卓志隆、林莉純、顏廷諭(2008) 柳杉疏伐木製作結構用製材品之目視與機械分等。林產工業27(3):187-198。 卓志隆(1998)栽植距離對柳杉強度變異性影響之研究(Ⅰ)靜力機械性質。林產工業17(3):453-470。 卓志隆(2000)栽植距離對柳杉強度變異性影響之研究(Ⅱ)動彈性係數與靜彈性係數。林產工業19(1):9-22。 卓志隆、顏廷諭、洪崇彬(2010)柳杉疏伐木製造之集成材抗彎性質評估。林產工業29(4):227-236。 周永東、葉克林(2010)原木等級及徑級對規格材質量及出材率的影響。木材工業24(1):5-7。 林志憲、李佳如、楊德新(2015)直交集成柳杉地板之物理與機械性質評估。林產工業34(1):1-10。 林育群、李佳如、楊德新(2013)應用非破壞技術評估國產造林木含水率與抗彎性質之研究。中華林產事業協會學術論文暨研究結果研討會論文集 2013:33-34。 林振榮(2004)非破壞性技術評估疏伐修枝處理對台灣杉造林木材質之影響。國立台灣大學生物資源暨農學院森林環境暨資源學系博士論文。 林振榮、曾家琳、李佳如、王亞男、蔡明哲(2008)柳杉紅色及黑色心材造林木物理性材質之評估。台大實驗林研究報告22(4):211-227。 林俊成、陳溢宏、王培蓉、陳幸君、吳孟珊(2017)台灣主要實木產品進口運輸之碳排放量估算。台灣林業科學32(3):191-201。 高榕翎(2013)台灣與大陸杉木人工林生長之研究比較。國立台灣大學生物資源暨農學院森林環境暨資源學系碩士論文。 張夆榕、楊德新(2013)應用非破壞檢測技術評估熱處理柳杉分等材之抗彎性質。中華林產事業協會學術論文暨研究結果研討會論文集 2013:3-4。 張豐丞、張夆榕、趙偉成、楊德新(2015)熱處理柳杉製材之抗彎性能評估。林產工業34(2):59-68。 郭瑋玲、盧崑宗(2012)不同溫度熱處理柳杉與相思樹木材之特性。林業研究季刊34(4):269-286。 陳勁豪、徐光平、楊德新、曾郁珊、王松永(2003)不同目視分等標準應用於台灣杉造林木製材強度性質之評估。林產工業22(3):181-188。 陳勁豪(2009)柳杉在不同生育地及疏伐作業之材質探討。國立台灣大學生物資源暨農學院森林環境暨資源學系博士論文。 陳品昇(2010)天然耐久木材抗腐朽機制之探討。國立台灣大學生物資源暨農學院森林環境暨資源學系博士論文。 陳建銘(2013)應力波斷面顯像應用於漂流木材質之評估。國立中興大學森林學系碩士論文。 楊德新(2007)中小徑木製造結構用集成材及其工程性能之研究。國立台灣大學生物資源暨農學院森林環境暨資源學系博士論文。 楊德新、邱志明、郭博文、莊鴻濱、林振榮(2005)超音波檢測技術評估商用地板材質之研究。台灣林業科學20(2):113-121。 詹明勳、曾郁珊、蔡明哲、高毓謙、李佳韋、郭佩鈺、黃憶汝(2005)三種非破壞檢測儀器應用於柳杉造林木立木材質之評估。台大實驗林研究報告19(3):207-216。 葉民權、李文雄、林玉麗(2006)國產柳杉造林木開發結構用集成材之研究。台灣林業科學21(4):531-546。 鄭雅文、林蘭東、李佳如、楊德新(2016)非破壞檢測技術應用於南方松木材彈性模數之探討。林業研究季刊38(4):241-252。 羅立偉(2016)非破壞性檢測技術應用於杉木及木材材質之評估。國立中興大學森林學系碩士論文。 蘇文清、陳周宏、陳柏璋、王怡仁(2007)荷重跨距內節特徵對台灣杉及杉木抗彎性質的影響。林產工業26(2):149-158。 Abdullah, C. K., M. Jawaid, A. K. Shawkataly and N. F. M. Rawi (2013) Termite and borer resistance of oil palm wood treated with phenol formaldehyde resin. Journal of Industrial. Research. & Technology 3(1):41-46. As, N., Y. Goker and T. Dundar (2006) Effect of knots on the physical and mechanical properties of scots pine. Wood research 51(3):51-58. ASTM D 1037 (2006) Evaluating the properties of wood-based fiber and particleboard material. ASTM Standards International. ASTM D 2915 (2006) Evaluating allowable properties for grades of structural lumber. ASTM Standards International. ASTM G154 (2016) Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials. ASTM Standards International. Cai, X., B. Rieldl, S. Y. Zhang and H. Wan (2007) Effects of Nanofillers on water resistance and dimensional stability of solid wood modified by melamine-urea formaldehyde resin. Wood And Fiber Science 39(2):307-318. Carballo, J., E. Hermoso and J. I. Fernández-Golfín (2009) Mechanical properties of structural maritime pine sawn timber from Gallicia (Pinus pinaster Ait.ssp. atlantica). Invest Agrar: System Resource Forest 18(2):152-158. Chiorescu, S. and A. Gronlund (2013) The visual grading system for Scots pine logs in relation to the quality of sideboards produced. Forest Products Journal 53(1):53-60. Clark Ⅲ, A. and R. H. Mcalister (1998) Visual tree grading system for estimating lumber yields in young and mature southern pine. Forest Products Journal 48(10):59-67. Deka, M., C. N. Saikia and K. K. Baruah (2002) Studies on thermal degradation and termite resistant of chemically modified wood. Bioresource Technology 84:151-157. Deka, M., W. Gindl, R. Wimmer and H. Christian (2007) Chemical modification of Norway spruce (Picea abies (L) Karst) wood with melamine formaldehyde resin. Indian Journal of Chemical Technology 14:134-138. De Oliveira Araújo, S., B. Rocha Vital, B. Oliveira, A. de Cássia Oliveira Carneiro, A. Lourenço and H.Pereira (2016) Physical and mechanical properties of heat treated wood from Aspidosperma populifolium, dipteryx odorata and mimosa scabrella. Maderas. Ciencia y Tecnología 18(1):143-156. Esteves, B., A. V. Marques, I. Domigos and H. Pereira (2007) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology 41(3):193-207. Forest Products Laboratory (2010) Wood handbook-Wood as an engineering material. General Technical Report FPL-GTR-190.Madison, WI, USA. Fukuta, S., A. Watanabe, Y. Akahori, A. Makita, Y. Imamura and Y. Sasaki (2011) Bending properties of compressed wood impregnated with phenolic resin through drilled holes. European Journal of Wood and Wood Products 69:633–639. Furuno, T., Y. Imamura and H. Kajita (2004) The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neturalized phenolic-resin and resin penetration into wood cell walls. Wood Science and Technology 37:349-361. Gindl, W., U. Muller and A. Teischinger (2007) Transverse compression strength and fracture of spruce wood modified by melamine-formaldehyde impregnation of cell walls. Wood and Fiber Science 35(2):239-246. Gindl, W. and H. S. Gupta (2002) Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation. Composites Part A 33:1141-1145. Hakkou, M., M. Pétrissans, P. Gérardin and A. Zoulaian (2006). Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability 91(2):393-397. Hannrup, C. Cahalan, G. Chantre, M. Grabner, B. Karlsson, I. L. Bayon, G. L. Jones, U. Müller, H. Pereira, J. C. Rodrigues, S. Rosner, P. Rozenberg, L. Wilhelmsson and R. Wimmer (2007) Genetic parameters of growth and wood quality traits in Picea abies. Scandinavian Journal of Forest Research 19(1):14-29. Hasegawa, M., M. Takata, J. Matsumura and K. Oda (2011) Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood. Ultrasonics 51:296–302. Hermoso, E., R. Mateo, G. Íñiguez-González, J. Montón and F. Arriaga (2016) Visual grading and structural properties assessment of large cross-section Pinus radiate D. Don timber. BioResources 11(2):5312-5321. Kamdem, D. P., A. Pizzi and A. Jermannaud (2002) Durability of heat-treated wood. Holz als Roh- und Werkstoff 60(1):1-6. Katz, S. A. and H. Salem (2005) Chemistry and toxicology of building timbers pressure-treated with chromated copper arsenate: a review. Journal of Applied Toxicology 25:1–7. Karsulovic, J. T., L. A. Leon and L. Gaete (2000) Ultrasonic detection of knots and annual ring orientation in Pinus radiata lumber. Wood and Fiber Science 32(3):278-286. Kielmann, B. C. and C. Mai (2016) Application and artificial weathering performance of translucent coatings on resin-treated and dye-stained beech-wood. Progress in Organic Coatings 95: 54-63. Korkut, D. S. and B. Guller (2008) The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology 99(8):2846-2851. Korkut, S. and A. Aytin (2015) Evaluation of physical and mechanical properties of wild cherry wood heat-treated using the thermowood process. Maderas. Ciencia y Tecnología 99:2846-2851. Lam, F., J. D. Barrett and S. Nakajima (2005) Influence of knot area ratio on the bending strength of Canadian Douglas fir timber used in Japanese post and beam housing. Journal of Wood Science 51:18–25. Lahtela, V. and T. Kärki (2014) Effects of impregnation and heat treatment on the physical and mechanical properties of Scots pine (Pinus sylvestris) wood. Wood Material Science & Engineering 11(4):217-227. Leemon, N. F., Z. Ashaari, M. K. A. Uyup, E. S. Bakar, P. M. Tahir, M. A. R. Saliman, M. A. Ghani and S. H. Lee (2015) Characterisation of phenolic resin and nanoclay admixture and its effect on impreg wood. Wood Science and Technology 49:1209-1224. Lee, C. J., S. Y. Wang and T. H. Yang (2011) Evaluation of moisture content changes in Taiwan red cypress during drying using ultrasonic and tap-tone testing. Wood and Fiber Science 43(1):57-63. Li, T., D. L. Cheng, S. Avramidis, M. E. P. Wålinder and D. G. Zhou (2017) Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood. Construction and Building Materials 144:671-676. Loh, Y. F., T. M. Paridah, Y. B. Hoong, E. S. Bakar, M. Anis and H. Hamdan (2011) Resistance of phenolic-treated oil palm stem plywood against subterranean termites and white rot decay. International Biodeterioration & Biodegradation 65(1):14-17. Lukowsky, D. (2002) Influence of formaldehyde content of waterbased melamine formaldehyde resins on physical properties of Scots pine impregnated therewith. Holz als Roh- und Werkstoff 60:349-355. Oliveira, F. G. R., M. Candian, F. F. Lucchette, J. L. Salgon and A. Sales (2005) A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra). Building and Environment 40:297–300 Oja, J., L. Wällbacks, S. Grundberg, E. Hägerdal and A. Grönlund (2003) Automatic grading of Scots pine (Pinus sylvestris L.) sawlogs using an industrial X-ray log scanner. Computers and Electronics in Agriculture 41(1-3):63-75. Piter, J. C., R. L. Zerbino and H. J. Blaβ (2004) Machine strength grading of Argentinean Eucalyptus grandis. Holz Roh Werkst 62: 9-15. Pot, D., G. Chantre, P. Rozenberg, J. C. Rodrigues, G. L. Jones, H. Pereira, B. Hannrup, C. Cahalan and C. Plomion (2002) Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). Annals of Forest Science 59:563-575. Pommier, R., D. Breysse and J. Dumail (2013) Non-destructive grading of green Maritime pine using the vibration method. European Journal of Wood and Wood Products 71:663–673. Ross, R. J., K. A. Mcdonald, D. W. Green and K. C. Schad (1997) Relationship between log and lumber modulus of elasticity. Forest Products Journal 47(2):89-92. Ryu, J. Y., M. Takahashi, Y. Imamura and T. Sato (1991) Biological resistance of phenol-resin treated wood. Mokuzai Gakkaishi 37:852-858 Salman, S., A. Pétrissans, M. F. Thévenon, S. Dumarçay and P. Gérardin (2015) Decay and termite resistance of pine blocks impregnated with different additives and subjected to heat treatment. European Journal of Wood and Wood Products 74(1):37-42. Stapel, P. and J. W. G. van de Kuilen (2014) Influence of cross-section and knot assessment on the strength of visually graded Norway spruce. European Journal of Wood and Wood Products 72(2):213-227. Steele, P. H. (1984) Factor determining lumber recovery in sawmilling. General Technical Report FPL-39.Madison, WI, USA. Sun, B., X. Wang and J. Liu (2013) Changes in dimensional stability and mechanical properties of Eucalyptus pellita by melamine–urea–formaldehyde resin impregnation and heat treatment. European Journal of Wood and Wood Products 71(5):557-562. Shams, M. I. and H. Yano (2004) Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin II: effects of processing parameters. Journal of Wood Science 50:343–350. Shams, M. I., H. Yano and N. Kagemori (2006) Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin IV: species dependency. Journal of Wood Science 52:179–183. Temiz, A., U. C. Yildiz and T. Nilsson (2006) Comparison of copper emission rates from wood treated with different preservatives to the environment. Building and Environment 41:910–914. Vega, A., A. Dieste, M. Guaita, J. Majada and V. Baño (2012) Modelling of the mechanical properties of Castanea sativa Mill. structural timber by a combination of non-destructive variables and visual grading parameters. European Journal of Wood and Wood Products 70(6):839-844. Wang, X., R. J. Ross, B. K. Brashaw, J. Punches, J. R. Erickson, J. W. Forsman and R. F. Pellerin (2004) Diameter effect on stress-wave evaluation of modulus of elasticity of logs. Wood and Fiber Science 36(3):368–377. Wang, S. Y., J. H. Chen, M. J. Tsai, C. J. Lin and T. H. Yang (2008) Grading of softwood lumber using non-destructive techniques. Journal of Materials Processing Technology 208:149-158. Wodzicki, T. Z. (2001) Natural factors affecting wood structure. Wood Science and Technology 35:5-26. Yang, B. Z., R. D. Seale, R. Shmulsky, J. Dahlen and X. Wang (2015) Comparison of nondestructive testing for evaluating No.2 Southern pine lumber: Part A, Modulus of elasticity. Wood and Fiber Science 47(4):375-384. Yang, T. H., C. J. Lin, S. Y. Wang and M. J. Tsai (2007) Characteristicsof particleboard made from recycledwood-waste chips impregnated with phenol formaldehyde resin. Building and Environment 42:189-195.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/98148-
dc.description.abstract為提升木材自給率,近年國內鼓勵國產材之收穫與利用,並積極推動國產木竹材產銷履歷,然木材之有效利用首重其性質,因此,本研究之第一部分以國產杉木(Cunninghamia lanceolata)為主要材料,由原木端開始進行製材利用率與製材品之強度分級研究,並進行容許應力之推估,以提高木材之利用效率。另外為增廣其應用範圍,提升其於戶外使用之耐久性。而本研究之第二部分以三聚氰胺甲醛樹脂(Melamine formaldehyde resin, MF)進行杉木製品之改質處理,探討其改質處理後之機械性質、尺寸安定性與耐生物劣化性質。 由製材利用率之結果顯示,隨原木徑級增加其製材利用率亦隨之提高,製材品分級方面,以機械等級及GP(Grading parameter)等級區分具較佳之分級效果,目視等級區分則有強度變異性較大之問題。另CNS 14630(2017)針葉樹結構用製材之分級與CNS 14631(2002)框組壁結構用製材之分級兩種不同標準之比較顯示,以後者進行分等其3等材與等外材會有較高之分布比例;原木品等部分,隨目視等級提高,生產之製材品亦集中於較高之等級材,且強度性質亦隨之提升。第二部分MF改質處理之結果顯示,MF改質杉木之機械性質有提升之趨勢,改善效果方面以硬度最佳,抗壓強度次之,抗彎強度與抗剪強度則相對較不顯著;尺寸安定性方面,MF改質處理杉木之吸水率、體積膨脹率皆有下降之趨勢,且抗膨脹效能亦隨重量增加率之提高而有所提升;耐生物劣化性方面,抗白蟻試驗之結果顯示MF改質處理杉木之質量損失有顯著降低之情形,白蟻致死率方面於重量增加率W25及W35組亦有良好之效果,而耐腐朽性能結果亦顯示MF改質處理杉木不論以兩種褐腐菌L. sulphureua、F. pinicola及兩種白腐菌L. betulina、T. versicolor進行試驗皆能有效降低其質量損失。最後在加速耐候試驗部分,經QUV加速耐後試驗後之表面顏色變化、粗糙度及表面濕潤性評估,MF改質處理杉木相較於未處理組具較佳之耐候特性。zh_TW
dc.description.abstractIn order to improve the self-sufficiency rate of wood in Taiwan, in recent years, the effectively harvesting and utilization of domestic wood, and actively promote the certification system of domestic wood and bamboo products are encouraged. In addition, the qualities of the domestic wood is the key to develop the further application, therefore, the first part of this research is to investigate the sawing yield and the strength grading of the China fir wood, and the allowable stress is also evaluated to improve the utilization efficiency of the wood. In order to expand its applications and improve the durability for outdoor use, the second part of this study is to investigate the selected properties including mechanical properties, dimensional stability and anti-biological degradation properties of China fir wood modified by melamine-formaldehyde resin (MF) treatment. The result showed that the sawing yield was increased with the log diameter. However, the strength properties for visual graded China fir wood revealed a large variability in Class 1 to Class 3 grade, while they were graded more precisely by the E-grading rule and the GP (Grading parameter) grading rule. Comparing with two visual graded rules, CNS 14630 (2017) and CNS 14631 (2002), the result showed that the lumber with Class 3 and below grade had the higher distribution ratio according to CNS 14631 (2002) inspection. In conclusion, the relationship between the log qualities and lumber properties showed that the higher the grade of log presented, the better the visual properties and strength of lumber were performed. On the other hand, the mechanical properties including compressive strength, hardness, shear strength and bending properties of China fir wood were increased after treated by MF. The result also revealed that the hardness of China fir wood had the highest improvement and followed by the compressive strength. On the contrary, the increments of bending properties and shear strength were not obvious. In terms of the dimensional stability of the treated China fir wood, the water absorption and volumetric swelling coefficient both decreased with the weight percent gain of the MF penetration increased, meanwhile, the anti-swelling efficiency of treated China fir wood increased. Furthermore, the result of the termite resistance test showed that the mass loss of China fir wood was reduced after treated by the MF resin, and the highly termite mortality rate was presented in the W25 and W35 groups. Furthermore, the results of decay resistance test indicated that the mass loss was also reduced for the MF treated China fir wood no matter tested by brown rot fungi (L. sulphureua, F. pinicola) or white rot fungi (L. betulina, T. versicolor). Finally, after accelerated weathering test, the China fir wood treated with MF resin had a better surface properties performance, including of surface color change, roughness and wettability than untreated one.en_US
dc.description.tableofcontents摘要 i Abstract ii 目次 iv 表目次 vi 圖目次 ix 第一章 前言 1 第二章 文獻回顧 4 一. 杉木簡介 4 二. 影響木材材質之因素 4 三. 原木與製材品分級 5 (一)目視分等與機械等級區分 5 (二)非破壞性檢測技術 7 四. 戶外用木材之改質處理 11 (一)防腐藥劑注入改質處理 11 (二)熱處理改質技術 12 (三)樹脂改質處理 15 第三章 材料與方法 18 一、實大材 18 (一)原木與製材品品等 18 (二)實大材節面積測量 18 (三)物理性質 19 (四)非破壞性檢測試驗 20 (五)抗彎強度試驗 21 二、小試材 21 (一)三聚氰胺甲醛樹脂改質處理 22 (二)物理性質 22 (三)非破壞性檢測試驗 24 (四)機械性質 24 (五)耐生物劣化性 26 (六)加速耐候試驗 27 (七)掃描式電子顯微鏡觀察 29 三、資料分析 29 第四章 結果與討論 30 一、原木與實大材 30 (一)原木製材利用率 30 (二)實大材之基本性質 31 (三)目視等級區分與機械等級區分 33 (四)預測模型之建立與分級 45 (六)容許應力設計 52 二、MF改質處理杉木 57 (一)MF改質處理杉木之重量增加率 57 (二)機械性質 59 (三)尺寸安定性 62 (四)耐生物劣化性質 66 (五)表面顏色變化 71 (六)加速耐候試驗 72 第五章 結論 76 參考文獻 78zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2022-01-31起公開。zh_TW
dc.subject國產材zh_TW
dc.subject杉木zh_TW
dc.subject容許應力zh_TW
dc.subject三聚氰胺甲醛樹脂zh_TW
dc.subject樹脂改質處理zh_TW
dc.subjectDomestic wooden_US
dc.subjectChina firen_US
dc.subjectAllowable stressen_US
dc.subjectMelamine-formaldehyde resinen_US
dc.subjectResin treated wooden_US
dc.title杉木品等區分技術及三聚氰胺甲醛樹脂加壓處理材之性質探討zh_TW
dc.titleGrading technology of China fir sawn lumber and its properties by melamine formaldehyde resin impregnationen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2019-01-31zh_TW
dc.date.openaccess2022-01-31-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextrestricted-
Appears in Collections:森林學系
Files in This Item:
File SizeFormat Existing users please Login
nchu-108-7105033201-1.pdf2.6 MBAdobe PDFThis file is only available in the university internal network   
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.