Please use this identifier to cite or link to this item:
標題: 生質物於內通式流體化床進行氣化之研究
Biomass Gasification in an Interconnected Fluidized Bed
作者: 張維峻
Wei-Chun Chang
關鍵字: 氣化;造粒;生質物;內通式流體化床;合成氣;Gasification;Pellet;Biomass;Interconnected fluidized bed;Syngas
引用: 中華民國國家標準(2002)木材輝分試驗法。經濟部標準檢驗局,CNS 3084,類別O2016。 中華民國國家標準(2004)木漿用材含水量試驗法。經濟部標準檢驗局,CNS 6947,類別P3041。 行政院(2009)再生能源發展條例。 行政院環保署(2017)2017年中華民國國家溫室氣體排放清冊報告。 吳耿東(2008)認識生質能源。物理雙月刊 30(4): 377-388。 吳耿東(2010)流體化床與生質能。科學發展 450:20-25。 吳耿東、李宏台(2001)廢棄物氣化技術。工程月刊 74(3):85-96。 吳耿東、李宏台(2004)生質能源化腐朽為能源。科學發展 383:20-27。 吳耿東、蔡佳儒、邱耀平、陳柏壯、許弘德(2014)新型內通式流體化床化學迴圈反應器流力行為之研究。行政院原子能委員會委託研究計畫報告,NL1030484。 林裕仁、潘薇如(2016)木質能源於國內能源利用之評估分析。台灣林業科學31(3):169-180。 柳萬霞、徐恆文、黃欽銘、陳威丞、歐陽湘(2012)燃燒後捕獲二氧化碳技術-鈣迴路捕獲CO2技術國際現況與國內發展介紹。工業污染防治季刊121: 71-86。 許弘德(2013)焙燒生質物於流體化床進行氣化之研究。國立中興大學森林學系所碩士論文。台中市。 陳朝羿(2011)木質生質物與汙泥於流體化床進行混合氣化之研究。國立中興大學森林學系所碩士論文。台中市。 楊凱成(2009)生質物於流體化床中進行蒸汽氣化之研究。國立中興大學森林學系所碩士論文。台中市。 經濟部能源局(2007)能源科技研究發展白皮書。 經濟部能源局(2018)能源統計年報,經濟部能源局,台北。 經濟部能源局能源知識庫(2017)美國川普政府的能源氣候政策研析。 錢建嵩(主編)、黃正忠、楊玉樹、歐建志、張瑞顯、吳耿東、游逸將(1992)《流體化床技術》,初版,台北,高立股份有限公司發行。 謝明桓(2012)木質材料與微藻於流體化床進行混合氣化之研究。國立中興大學森林學系所碩士論文。台中市。 André, R. N., F. Pinto, C. Franco, M. Dias, I. Gulyurtlu, M. A. A. Matos and I. Cabrita (2005) Fluidised bed co-gasification of coal and olive oil industry wastes. Fuel 84(12): 1635-1644. BP. (2017) BP Statistical Review of World Energy June 2017. Devi, L., K. J. Ptasinski and F. J. J. G. Janssen (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass and Bioenergy 24(2): 125-140. Devi, L., K. J. Ptasinski, F. J. J. G. Janssen, S. V. B. van Paasen, P. C. A. Bergman and J. H. A. Kiel (2005) Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy 30 (4): 565-587. Dong, L., M. Asadullah, S. Zhang, X. S. Wang, H. Wu and C. Z. Li (2013) An advanced biomass gasification technology with integrated catalytic hot gas cleaning: part I: technology and initial experimental results in a lab-scale facility. Fuel 108: 409-416. ECN (2018) Phyllis2: Database for biomass and waste. FAO (2008) A review of the current state of Bioenergy development in G8 +5 countries. FAO. Rome, Italy. FAO (2018) Geldart, D (1986) Single particles, fixed and quiescent beds. Ch.2 in Gas fluidization technology. A Wily Interscience. Göransson, K., U. Söderlind, J. He and W. Zhang (2011) Review of syngas production via biomass DFBGs. Renewable and Sustainable Energy Reviews 15(1): 482-492. Grover, P. D. and S. K. Mishra (1996) Biomass briquetting: technology and practices. the FAO Regional Wood Energy Development Programme in Asia, Bangkok, Thailand. Guo, F., Y. Dong, L. Dong and Y. Jing (2013) An innovative example of herb residues recycling by gasification in a fluidized bed. Waste Management 33 (4): 825-832. Hernández, J. J., M. Lapuerta and E. Monedero (2016) Characterisation of residual char from biomass gasification: effect of the gasifier operating conditions. Journal of Cleaner Production 138: 83-93. Hupa, M. (2012) Ash-related issues in fluidized-bed combustion of biomasses: recent research highlights. Energy & Fuels 26 (1): 4-14. IEA (2017) Key world energy statistics. International energy agency. Jones, D. R. M. and J. F. Davidson (1965) The flow of particles from a fluidised bed through an orifice. Rheologica Acta 4 (3): 180-192. Kagayama, M., M. Igarashi, M. Hasegawa, J. Fukuda and D. Kunii (1980) Gasification of solid waste in dual fluidized-bed reactors. In Thermal Conversion of Solid Wastes and Biomass. American Chemical Society. Kaltschmitt, M., H. Hartmann and H. Hofbauer (2009) Energie aus biomasse. Springer. Berlin, Heidelberg. Kook, J. W., H. M. Choi, B. H. Kim, H. W. Ra, S. J. Yoon, T. Y. Mun, J. H. Kim, Y. K. Kim, J. G. Lee and M. W. Seo (2016) Gasification and tar removal characteristics of rice husk in a bubbling fluidized bed reactor. Fuel 181: 942-950. Koppatz, S., C. Pfeifer and H. Hofbauer (2011) Comparison of the performance behaviour of silica sand and olivine in a dual fluidised bed reactor system for steam gasification of biomass at pilot plant scale. Chemical Engineering Journal 175: 468-483. Kuo, P.-C., W. Wu and W.-H. Chen (2014) Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel 117: 1231-1241. Lardier, G., J. Kaknics, A. Dufour, R. Michel, B. Cluet, O. Authier, J. Poirier and G. Mauviel (2016) Gas and bed axial composition in a bubbling fluidized bed gasifier: results with miscanthus and olivine. Energy & Fuels 30 (10): 8316-8326. Leung, D. Y. C., X. Wu and M. K. H. Leung (2010) A review on biodiesel production using catalyzed transesterification. Appl. Energy 87 (4): 1083-1095. Li, C. and K. Suzuki (2009) Tar property, analysis, reforming mechanism and model for biomass gasification—An overview. Renewable and Sustainable Energy Reviews 13 (3): 594-604. Lin, C. L. and M. Y. Wey (2004) The effect of mineral compositions of waste and operating conditions on particle agglomeration/defluidization during incineration. Fuel 83: 2335-2343. Lim, M. T., W.-L. Saw and S. Pang (2015) Effect of fluidizing velocity on gas bypass and solid fraction in a dual fluidized bed gasifier and a cold model. Particuology 18: 58-65. Liu, P., X. Guo, C. Wu and Y. Chen (2000) Gasification characteristics of biomass wastes in fluidized bed gasifier. Journal of Propulsion and Power 16: 606-608. Lv, P. M., Z. H. Xiong, J. Chang, C. Z. Wu, Y. Chen and J. X. Zhu (2004) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresource Technology 95 (1): 95-101. Milne, T. A., R. J. Evans and N. Abatzaglou (1998) Biomass Gasifier ' Tars': Their Nature, Formation and Conversion. NREL/TP-570-25357. Molino, A., S. Chianese and D. Musmarra (2016) Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry 25 (1): 10-25. Neeft, J., H. Knoef, G. J. Buffinga, U. Zielke, K. Sjöström, C. Brage, P. Hasler, P. A. Smell, M. Suomalainen, M. A. Dorrington and C. Greil (2008) Guideline for sampling and analysis of tars and particles in biomass producer gases. Ch.11 in Progress in thermochemical biomass conversion. Blackwell Science Ltd. Pemberton, S. T. and J. F. Davidson (1986) Elutriation from fluidized beds - I. particle ejection from the dense phase into the freeboard. Chem. Eng. Sci. 41 (2): 243–251. Pinto, F., C. Franco, R. N. André, C. Tavares, M. Dias, I. Gulyurtlu and I. Cabrita (2003) Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel 82 (15): 1967-1976. Prins, M. J. (2005) Thermodynamics analysis of biomasss gasification and torrefaction. Doctoral dissertation. Technische Universiteit Eindhoven, Eindhoven. Sharma, S. and P. N. Sheth (2016) Air-steam biomass gasification: Experiments, modeling and simulation. Energy Conversion and Management 110: 307-318. Snip, O. C., R. Korbee, J. C. Schouten and C. M. van den Bleek (1996) Solids and Gas Transport from and between Aerated and Fluidized Beds. AIChE Symp. Ser. 92 (313): 76-80 Ute, W., A. Isabella and H. Hermann (2009) Tar content and composition in producer gas of fluidized bed gasification of wood—Influence of temperature and pressure. Environmental Progress & Sustainable Energy 28 (3): 372-379. van der Stelt, M. J. C., H. Gerhauser, J. H. A. Kiel and K. J. Ptasinski (2011) Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy 38 (9): 3748-3762. van Loo, S. and J. Koppejan (2008) The Handbook of Biomass Combustion and Co-firung. Earthscan. London Sterling p 442. Vlek, J. (1997) Positron emission particle tracking in interconnected fluidized beds. Master's thesis. Delft University of Technology, Delft. Wen, C. Y. and Y. H. Yu (1966) Mechanics of fluidization. Chem. Eng. Progr. Symp. Ser. 62 (62): 100-111. Wilk, V. and H. Hofbauer (2013) Influence of fuel particle size on gasification in a dual fluidized bed steam gasifier. Fuel Processing Technology 115: 139-151. Zevenhoven, M., P. Yrjas and M. Hupa (2010) Ash-forming matter and ash-related problems. In Handbook of Combustion. (eds M. Lackner, F. Winter and A. K. Agarwal) Zhang, S., M. Asadullah, L. Dong, H. L. Tay and C. Z. Li (2013) An advanced biomass gasification technology with integrated catalytic hot gas cleaning. part II: tar reforming using char as a catalyst or as a catalyst support. Fuel 112: 646-653. Zhang, S., Y. Song, Y. C. Song, Q. Yi, L. Dong, T. T. Li, L. Zhang, J. Feng, W. Y. Li and C. Z. Li (2016) An advanced biomass gasification technology with integrated catalytic hot gas cleaning. part III: effects of inorganic species in char on the reforming of tars from wood and agricultural wastes. Fuel 183: 177-184.
氣 化係在高溫下進行的非催性部分氧反應,將含碳之固態物質轉為氣 化係在高溫下進行的非催性部分氧反應,將含碳之固態物質轉為氣 化係在高溫下進行的非催性部分氧反應,將含碳之固態物質轉為氣 化係在高溫下進行的非催性部分氧反應,將含碳之固態物質轉為態為主的燃料;造粒是藉由物理 擠壓將生質外觀改變、提高密度一種前處態為主的燃料;造粒是藉由物理 擠壓將生質外觀改變、提高密度一種前處態為主的燃料;造粒是藉由物理 擠壓將生質外觀改變、提高密度一種前處態為主的燃料;造粒是藉由物理 擠壓將生質外觀改變、提高密度一種前處態為主的燃料;造粒是藉由物理 擠壓將生質外觀改變、提高密度一種前處方式。本研究以 20 kWth內通式流體化床 氣化反應爐進行雜木造粒之性能研 氣化反應爐進行雜木造粒之性能研 究,以探討氣化溫度、流體數 究,以探討氣化溫度、流體數 究,以探討氣化溫度、流體數 究,以探討氣化溫度、流體數 究,以探討氣化溫度、流體數 以及空氣等值比因子對化之合成組、焦 以及空氣等值比因子對化之合成組、焦 以及空氣等值比因子對化之合成組、焦 油含量之影響。
研究結果顯示,隨氣化溫度上升合成中 CO2含量下降, CO與 H2含量 上升,是因為溫度提高有助於反應速率的增加最適 上升,是因為溫度提高有助於反應速率的增加最適 上升,是因為溫度提高有助於反應速率的增加最適 上升,是因為溫度提高有助於反應速率的增加最適 上升,是因為溫度提高有助於反應速率的增加最適 操作條件在氣化溫度 800oC、 4倍最小流體化數 、空氣等值比為 0.2時,合成氣 時,合成氣 熱值最高。此外,氣化 反應床 區在空氣等值比為 0.4時,不同 時,不同 時,不同 氣化條件 之合成氣 CO2含量皆高於 50%。研究顯 。研究顯 示,當提升空氣等 ,當提升空氣等 值比時,合成氣中液態焦油含量卻隨之增加 值比時,合成氣中液態焦油含量卻隨之增加 值比時,合成氣中液態焦油含量卻隨之增加 值比時,合成氣中液態焦油含量卻隨之增加 值比時,合成氣中液態焦油含量卻隨之增加 ,係由於反應器爐 ,係由於反應器爐 ,係由於反應器爐 體乾舷 區長度過短所致。在 區長度過短所致。在 區長度過短所致。在 乾舷 區長度過短的情況下提升 空氣等值比,也會因為 空氣等值比,也會因為 空氣等值比,也會因為 滯留時間太短,造成揮 滯留時間太短,造成揮 滯留時間太短,造成揮 發分尚未斷裂成小子之前就離開反應器,導致焦油含量 發分尚未斷裂成小子之前就離開反應器,導致焦油含量 發分尚未斷裂成小子之前就離開反應器,導致焦油含量 不降反升 。

Gasification can be defined as the conversion of carbon feedstock to combustible gas by partial oxidation at the elevated temperature. Pelletization is a pretreatment process that can improve biomass density and change its appearance type by the physical extrusion. In this study, mixed wood pellet were gasified in a 20 kWth interconnected fluidized bed (IFB) gasifier to investigate the effects of operation conditions, e.g. gasification temperature, fluidization velocity and equivalent ratio (ER) on syngas composition, tar content, etc.
The results show that the CO2 content decreases with increasing the gasification temperature, but the CO and H2 contents show the contrary tendency. An optimal operating condition to obtain the highest higher heating value (HHV) syngas can be found while the gasification temperature is 800oC, the fluidization velocity is 4 times minimum fluidization velocity, and ER is 0.2. In addition, although the operating conditions are different , the CO2 content is higher than 50% when ER is 0.4. It can also be seen that the tar content increases with increasing the ER, due to the short freeboard of the fluidized bed. Due to the short freeboard, when ER increases, the volatile cannot be broken into the small molecule. As a result, the tar content increases.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-17起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105033211-1.pdf5.19 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.