Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98151
標題: 臺灣森林火災特性分析
Analysis of Characteristics of Forest Fire in Taiwan
作者: 黃蕙萱
Hui-Hsuan Huang
關鍵字: 森林火災;火災頻率;火災面積;人為因素;燃料因子;氣象因子;邏輯斯迴歸;Forest Fire;Fire Frequency;Fire Area;Human Factor;Fuel Factor;Weather Factor;Logistic regression
引用: 于成龍 (2007) 基於GIS和RS森林火險預測的研究。東北林業大學生態學系博士論文。101頁。 中央氣象局 (2016) 2007 年至 2015年局屬地面測站每月氣象資料。交通部中央氣象局開放資料平台。 王柏程 (2016) 大肚台地野火發生之影響因素研究。國立中興大學水土保持學系碩士論文。74頁。 王筱萱(2004)理性行為應用於武陵地區農民用火行為。國立臺灣大學森林學研究所碩士論文。119 頁。 王遠飛、何洪林 (2007) 空間數據分析方法。科學出版社。243頁。 王濟川、郭志剛 (2004) Logistic 迴歸模型─方法與應用。五南圖書出版股份有限公司。338頁。 朱容練、朱吟晨、林士堯、劉俊志、陳永明 (2015) 2014年-2015年乾旱事件概述。國家災害防救科技中心災害防救電子報 124:1-11。 吳景揚 (2003) 林火與氣象指標因子之研究。國立中興大學森林學系碩士論文。71頁。 呂金河 (譯) (2005) 多變量分析 (原作者:S. Sharma )。滄海書局。(原著出版年:1995) 。512頁。 呂金誠 (1990) 野火對臺灣主要森林生態系影響之研究。國立中興大學植物學研究所博士論文。200頁。 呂福原、歐辰雄、曾彥學、王秋美 (2017) 台灣樹木誌。中華易之森林植物研究協會。1271頁。 周天穎、葉美伶、吳政庭、簡致遠、黃姿蓉 (2011) 輕輕鬆鬆學 Arc GIS 10。儒林圖書股份有限公司。485頁。 林師模、陳苑欽 (2013) 多變量分析:管理上的應用 二版。雙葉書廊有限公司。367 頁。 林素惠、吳景揚 (2015) 認識森林火災及林火危險度預警系統。臺灣林業 41(6):9-19。 林務局 (2015) 森林火災原始數據。行政院農業委員會林務局。 林務局 (2016) 第四次森林資源調查。行政院農業委員會林務局。 林朝欽 (1995) 森林火災危險度預測系統之研究。林業試驗所研究報告季刊 10(3):325-330。 林朝欽 (2001a) 林火與森林保護之關係。林業研究專訓 8(5):8-12。 林朝欽 (2001b) 臺灣地區國有林之森林火分析。林業試驗所研究報告季刊 7(2):169-178。 林朝欽、邱祈榮、陳明義、蕭其文、曾仁鍵 (2005) 大肚台地地區林火危險預測模式之推導。中華林學季刊38(1):83-94 。 林朝欽、麥舘碩 (2014) 開源軟體應用在臺灣森林火資料庫之更新。台灣林業科學 29:1-11。 林震岩 (2007) 多變量分析:SPSS 的操作與應用。智勝文化事業有限公司。728頁。 邱立文、黃群修、吳俊奇、謝小恬 (2015) 第四次全國森林資源調查成果概要。臺灣林業 41(4):3-13。 邱祈榮、曾仁鍵、楊棋明、黃文達 (2006) 灰系統理論在生物學之應用:大肚山氣候因子對其林火頻率與面積之灰關聯分析。作物、環境與生物資訊 3:355-360。 信曉穎、江洪、周國模、余樹全、王永和 (2011) 加拿大森林火險氣候指數系統(FWI)的原理及應用。浙江農林大學學報 28(2):314-318。 胡海青、魏書精、金森、孫龍 (2012) 森林火災碳排放計量模型研究發展。應用生態學報 23(5):1423-1434。 苗慶林、劉耀香、田曉瑞 (2014) 林火管理對火動態的影響。世界林業研究 27(4):42-47。 孫宗志 (2004) 燃料棒應用於林火危險度預測之研究。國立中興大學森林學系碩士論文。71頁。 莊翌琳、蘇潘、林昭遠 (2016) 大肚台地野火風險評估模式建置之研究。水土保持學報 48(2):1681-1696。 許晃雄、陳正達、盧孟明、陳永明、周佳、吳宜昭 (2011) 臺灣氣候變遷科學報告 2011 (精簡版)。行政院國家科學委員會出版。84頁。 陳泓碩、曾志忠 (2017) 走訪美國蒙大拿州火科學實驗室與處理火林相。臺灣林業 43(3):3-11。 陳香如 (2000) 整合航測與GIS技術應用於潛在森林火災危險等級劃分之研究。國立中興大學森林學系碩士論文。111頁。 童慶斌、李培芬、林幸助、李明旭、盧虎生、蘇慧貞、張靜貞、詹士樑、許泰文、李河清 (2017) 臺灣氣候變遷科學報告 2017─衝擊與調適面向。國家災害防救中心。666頁。 童慶斌、劉子明、林嘉佑、曹榮軒 (2016) 氣候變遷調適行動計畫建構指引(初稿)。100頁。 黃柏誠、陳永明、朱容練、陳韻如、陳世偉、陳品妤 (2010) 2009年臺灣乾旱事件研究。國家災害防救科技中心研究報告。6頁。 黃清吟、林朝欽 (2005) 臺灣地區國有林森林火之特性分析。中華林學季刊 38(4):449-464。 溫在弘、劉擇昌、林民浩 (2010) 犯罪地圖繪製與犯罪地圖繪製與熱區分析方法及其應用:以 1998-2007 年台北市住宅竊盜年台北市住宅竊盜台北市住宅竊盜犯罪為例。地理研究 52:43-64。 鄒志翀、冷紅 (2018) 澳大利亞森林火災風險相關研究進展及其啟示。國際城市規劃33(3):62-72。 趙鳳君 (2007) 氣候變化對內蒙古大興安嶺林區森林火災的影響研究。中國林業科學研究院博士論文。 劉士銘 (2004) 整合GIS與MODIS影像應用於森林火災偵測之研究。國立屏東科技大學森林學系碩士論文。92頁。 劉棠瑞、蘇鴻傑 (1983) 森林植物生態學。462頁。 鄭煥能 (1991) 森林防火。東北林業大學出版社 257頁。 鄭煥能 (1991) 森林防火。東北林業大學出版社。 賴彥任、邱祈榮、林朝欽 (2002) 長期氣象判讀在林火行為預測上之應用。國立臺灣大學農學院實驗林研究報告 16(4):253-267。 謝漢欽、呂明倫、蔡真珍 (2012) 介紹海岸林地及森林集水區生態脆弱度評估與調適的方法。林業研究專訊 19(1):64-69。 顏少陵 (2017) 加拿大林火天氣指標系統應用-以台中港防風林區為例。吳鳳科技大學消防研究所碩士論文。97 頁。 顏添明、吳景揚 (2004) 南投林區林火影響因子之探討。林業研究季刊 26(1):47-60。 蘇鴻傑 (1992) 臺灣之植群:山地植群帶與地理氣候區 臺灣生物資源調查及資訊管理研討會論文集。中央植物研究所專刊第 11 號。 Ackerman A. S. , O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, E. J. Welton (2000) Reduction of tropical cloudiness by soot. Science 288:1024-1047. Alencar A. A., P. M. Brando, G. P. Brando and F. E. Putz (2015) Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological Applications 25(6):1493-1505. Andreae M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, M. A. F. Silva-Dias (2004) Smoking rain clouds over the Amazon. Science 303:1337-1342. Andrew J. D., A. M. Graham, F. Klara, G. William (2009) Australian fire weather as represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index. The Centre for Australian Weather and Climate Research 10. 91pp. BBC (2015) Earth – Forest fire videos – See how fire started on Earth' . http://www.bbc.co.uk/science/earth/natural_disasters/forest_fire Bedia J, S. Herrera, A. Camia, J. M. Moreno and J. M. Gutiérrez (2014) Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Climatic Change122:185-199. Bedia J., S. Herrera, J. M. Gutiérrez, A. Benali, S. Brands, B. Mota and J. M. Moreno (2015) Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology 214-215:369-379. Bunton, D. R. (1980) Using fire reports to estimate fire spread for focus simulation modeling. Fire Management Notes 41(2):5-9. Cheney N.P., S. Gould, W.R. Catchpole (1998) Prediction of Fire Spread in Grasslands. International Journal of Wildland Fire 8(1):1-13. Cochrane M. A. (2003) Fire science for rainforests. Nature 421:913-919. Cochrane M. A. and M. D. Schulze. (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31:2–16. Countryman C. M. (1972) The fire environment concept. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station. 1-15. Dowdy A. J., K. Finkele and W. Groot (2010) Index sensitivity analysis applied to the Canadian Forest Fire. Weather Index and the McArthur Forest Fire Danger Index Meteorologial Applications 17:298-312. Eskandari S. and E. Chuvieco (2015) Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation 42:57–64. Field C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and L. L.White (2014) Climate change 2014 impacts, adaptation, and vulnerability part A: global and sectoral aspects (working group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change). Intergovernmental Panel on Climate Change. 1132 pp. Fraser R. H., Z. Li (2002) Estimating fire related parameters in boreal forest using spot vegetation. Remote Sensing of Environment 82:95-110. Goodrick (2002) Modification of the Fosberg fire weather index to include drought. International Journal of Wildland Fire11:205-211. Guo F., J. L. Innes, G. Wang, X. Ma, L. Sun, H. Hu and Z. Su (2015) Historic distribution and driving factors of human-caused fires in the Chinese boreal forest between 1972 and 2005. Journal of Plant Ecology 8(5) :480-490. Harvey B. J. (2016) Human-caused climate change is now a key driver of forest fire activity in the western United States. PNAS 113(42):11649-11650. Hoyo L.V., M. P. M. Isabel, F. J. M. Vega (2011) Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. European Journal of Forest Research 130(6):983–996. Intergovernmental Panel on Climate Change (2013) Managing the risks of extreme events and disasters to advance climate change adaptation summary for policymakers. 20pp. Kalabokidis K., P. Palaiologou, E. Gerasopoulos, C. Giannakopoulos, E. Kostopoulou and C. Zerefos (2015) Effect of Climate Change Projections on Forest Fire Behavior and Values-at-Risk in Southwestern Greece. Forests 6(6):2214-2240. Kaufman Y. J., D. Tanré and , O. Boucher (2000) A satellite view of aerosols in the climate system. Nature 419: 215-223. Kinnaird M. F., T. G. O'Brien (1998) Ecological effects of wildfire on lowland rainforest in Sumatra. Conservation Biology 12:954-956. Laurance W. F. and B. Williamson (2001) Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conservation Biology 15:1529-1535. Lee B. S., M. E. Alexander, B. C. Hawkes, T. J. Lynham, B. J. Stocks, and P. nglefield. (2002) Information systems in support of wildland fire management decision making in Canada. Computers and Electronics in Agriculture 37: 185-198. Lin C. C. (2001) Recreation and fire: hikers' attitude toward forest fire use in Yushan and Shei-Pa National Parks. Journal of Taiwan Forest Science 16(3): 133-141. Lin C. C. (2004) Modeling fine dead fuel moisture in Taiwan red pine forests. Journal of Taiwan Forest Science 19(1): 27-32. Martina U., K Baždarić, L. Bilić-Zulle, M. Petrovečki (2007) What we need to know when calculating the coefficient of correlation. 17(1):10-15. Mollicone D., H. D. Eva and F. Achard (2006) Ecology: Human role in Russian wild fires. Nature 440:436-437. Mutch R. W. (1970) Wildland fire and ecosystem -- A hypothesis. Ecology 51:1046-1051. Natural Resources Canada (2017) Canadian Wildland Fire Information System. http://cwfis.cfs.nrcan.gc.ca/background/summary/fdr Nikos K., B. P. Gianni, M. Amar, M. Florent, C. Marco (2017) Relationships between forest fires and weather parameters from long-term national observations on a transect from Europe to North Africa. 19th EGU General Assembly, EGU2017 proceedings from the conference.p.14910. Noble I. R., A. M. Gill, G. A. V. Bary (1980) McArthur's fire‐danger meters expressed as equations. Australian Journal of Ecology banner 5(2):201-203. Pyne, S. T., P. A. Andrews and R. D. Laven (1966) Introduction to wild land fire. New York:J Wiley 769. Ramanathan V., P. J. Crutzen, J. T. Kiehl, D. Rosenfeld (2001) Aerosols, climate and the hydrological cycle. Science 294:2119-2124. Rodrigues M., A. Jiménez and J. Riva (2016) Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain. Natural Hazards 84(3) :2049-2070. Rosenfeld D. (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophysical Research Letters 26(20):3105-3108. Silverman B. W. (1986) Density estimation for statistics and data analysis. Published in Monographs on Statistics and Applied Probability 175pp. Srock A. F., Charney J. J., Potter B. E. and S. L. Goodrick (2018) The Hot-Dry-Windy Index: A New Fire Weather Index. Atmosphere 9(7):1-11. Taylor S. W. and M.E. Alexander (2017) Field Guide to the Canadian Forest Fire Behavior Prediction(FBP)System, Second Edition. Canadian Forest Service.120pp. Tian X., J. Douglas, J. Jin, L. Shu, F. Zhao and Wang (2011) Wildfires and the Canadian Forest Fire Weather Index system for the Daxing'anling region of China. International Journal of Wild McRae land Fire 20(8) :963-973. Van Nieuwstadt M. G. L., D. Sheil, K. Kartawinata (2001) The ecological consequences of logging in the burned forests of East Kalimantan, Indonesia. Conservation Biology 15:1183-1186. Wagner V. (1987) Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forest Service Publications. 35pp. Wang Z., D. K. Thompson, G. A. Marshall, C. Tymstra and M. D. Flannigan (2015) Increasing frequency of extreme fire weather in Canada with climate change. Climatic Change 130:573-586.
摘要: 
本研究的目的在於探討台灣地區森林火災之特性,採用林務局在2006至2015年記載之臺灣地區林地火災資料進行分析,主要探討的項目包括火災頻度、面積及氣象在時間序列及空間分布。所得之結果顯示,經篩選註記火災原因的資料進行分析,顯示人為因素為主要引起森林火災之因素,其中發生火災林型多為闊葉林與竹林;本研究採用卡方檢定分析火災發生次數與季節的關係,發現火災發生次數與季節有明顯關聯,以春季發生次數最多,經變方分析結果顯示冬季火燒面積較秋季與夏季多。就分布地區而言,經核密度估計結果呈現南投、嘉義、臺南、高雄林火發生密度較高,為林火高風險區,而環域分析結果顯示,火災多集中於近道路300 m之區域,其中近100 m之範圍內頻度發生最高;在火災垂直空間分布範圍,森林火災多集中於海拔500 m以下之區域;另外,透過氣象脆弱度指標可知火燒潛勢以春季較高,故應加強春季森林火災管理措施。由邏輯斯迴歸結果可知當降水日數越少,相對濕度越小且溫度較高之環境下,易增加林火發生機率。而上述林火特性分析可作為未來政策擬定之參考。

The purpose of this study was to analyze forest fire characteristics in Taiwan from 2006-2015. The data were obtained from the Taiwan Forestry Bureau. I analyzed fire frequency, fire area and weather in temporal and spatial distribution. The results showed that forest fire was high related to human activity and most forest fire occurred in broad-leaved and bamboo forest types. Moreover, I used the chi-square test fire to examine the relationship between season and fire frequency and found the significant difference among seasons, indicating that most fire occurred in spring. The analysis of variance was used to examine fire area and results showed that forest fire area was larger in winter than that in autumn and summer. According to the kernel density to estimat the distribution of forest fire, the density of forest fire was higher in Nantong, Chiayi Tainan and Kaohsiung. The buffer analysis was used t to examine the forest fire and distance of road and found forest fire occurred more frequently within 300 m of the roads, especially within 100 m of that. In the vertical distribution, forest fire usually occurred in less than 500 m above sea level. The vulnerability index was used to determine the high risk of fires and showed that this index was higher in spring, indicating that which should be pay attention to the forest fire. The logistic regression predicted the probability of forest fire and showed that it raises the probability of forest fire with less precipitation days, lower relative humidity and higher maximum temperature. The results of this study help understand the characteristics of forest fire and will provide concrete information for fire policy.
URI: http://hdl.handle.net/11455/98151
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7104033104-1.pdf5.83 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.