Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98153
標題: 菇類廢棄栽培基質造粒於氣泡式流體化床進行快速裂解製備生質燃油之研究
Fast Pyrolysis of the Spent Mushroom Substrate Pellets in a Bubbling Fluidized Bed for Bio-oil Production
作者: 江虹儀
Hung-Yi Chiang
關鍵字: 生質物;生質燃油;快速裂解;流體化床;焙燒;菇類栽培基質;Biomass;bio-oil;fast pyrolysis;fluidized bed;torrefaction;spent mushroom substrate
引用: 中華民國國家標準(2009)紙漿中α-、β-、γ-纖維素試驗法。經濟部標準檢驗局,CNS 10865,類號P3068。 中華民國國家標準(2013)木材含水率試驗法。經濟部標準檢驗局,CNS 452,類號O2003。 中華民國國家標準(2014)紙漿內酸不溶木質素試驗法。經濟部標準檢驗局,CNS 2721,類號P3021。 中華民國國家標準(2016)木材中乙醇甲苯萃取物試驗法。經濟部標準檢驗局,CNS 4713,類號O2018。 中華民國國家標準(2016)木材灰分試驗法。經濟部標準檢驗局,CNS 3084,類號O2016。 王伯徹、陳啟楨、華傑(1998)食藥用菇類的培養與應用。食品工業發展研究所編印。新竹。第187頁。 王松永、洪崇彬、王俊凱、汪偉杰、賴華雄(2004)竹材之活化製程與性能檢測。工業材料雜誌205: 86-96 王波、甘炳成(2007)圖說滑菇高效栽培關鍵技術。金盾出版社。北京。74頁。 吳耿東(2008)認識生質能源。物理雙月周刊 30 (4): 377-388。 吳耿東、李宏台(2001)廢棄物氣化技術。工程月刊74(4): 85-96。 李麗日(2012)社會學習領域概論。五南出版社。台灣。第340頁。 杜自彊(1987)食用菇栽培技術。財團法人豐年社。台北。第183頁。 林曉洪、王秀華(2004) 炭化竹層積材之電磁波遮蔽效應。中華林學季刊37(2): 115-125。 邱約翰(2010)木質生質物於流體化床進行快速裂解之研究。國立中興大學森林學系碩士論文。 張上鎮、顏才博(2011)木材保存新思維—開發環境友善之天然複方保存藥劑。林業研究專訊18(5):32-34.。 張東柱(2007)臺灣林業雙月刊。行政院農業委員會林務局出版。第33卷第五期。第51頁。 張東柱(2013)臺灣多孔菌類多樣性及其應用。科學研習月刊。國立臺灣科學教育館出版。第52卷第7期。第3頁。 張喻絜(2008)滑菇生理特性與栽培基質之探討。國立屏東科技大學植物醫學系碩士論文。屏東。 郭修伯、黃安婗(2015)你是風兒我是沙 ─流體化床。科學發展。第513期。第10-15頁。 陳永龍(2008)太空包木質廢棄物在生物複合材及木材保存藥劑之應用。國立中興大學森林學系碩士論文。台中。 陳永龍、陳載永、吳志鴻(2010)淺談真菌降解木材機制與環境友善型木材防腐劑。中華林學季刊43(1):181-189。 陳芃(2008)二代生質技術上路--以纖維素產製生質燃料。能源報導5月號。經濟部能源局出版。第12-14頁。 陳宗明、呂昀陞、石信德(2016)台灣菇類產業生產現況。菇類生技產業研討會專刊: 13-27。 黃清吟(2009) 木材燃燒面面觀。林業研究專訊16(6): 20-25。 溫祖康(2007)生質能源發展現況與我國推動能源作物之探討。農政與農情186期。 蔡佳儒(2011)微藻焙燒物之性質分析。國立中興大學森林學系碩士論文。台中。 盧崑宗、郭瑋玲(2010)熱處理木材之製造與運用。行政院農業委員會林務局99 年委託研究計畫。第19頁。 顏翊卉(2012)農林廢棄物焙燒產物之燃料特性研究。國立中興大學森林學系碩士論文。 行政院農委會農產品生產量值統計(2018)取自行政院農委會網站:http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx 行政院農委會農業試驗所植物病理組菇類研究室(2011a)台灣香菇栽培發展史。取自:https://www.tari.gov.tw/sub/form/index-1.asp?Parser=3,28,329,303,318,,248,14 行政院農委會農業試驗所植物病理組菇類研究室(2011b)香菇木屑塑膠包之製作方法。取自:https://www.tari.gov.tw/sub/form/index-1.asp?Parser=3,28,329,303,318,,277,25 農委會綠色國民所得帳農業固體廢棄物推估量(2016)取自農業剩餘物管理宣傳網-統計資料下載:https://agriculture.epa.gov.tw/ Ahmed, I. and A. Gupta (2009) Evolution of syngas from cardboard gasification. Applied Energy 86: 1732-1740. Alonso, D. M., J.Q. Bond, and J.A. Dumesic (2010) Catalytic conversion of biomass to biofuels. Green Chem 12: 1493-1513. Benson, S. A., M. L. Jones, and J. N. Harb (1993) Ash formation and deposition. Coal Sci Technol, 20: 299-373. Bergman, P. C. A., A. R. Boersma, R. W. R. Zwart and J. H. A. Kiel (2005) Torrefaction for biomass co-firing in existing coal-fired power station.ECN report, ECN-C-05-013. Bergman, P.C. and J.H. Kiel (2005) Torrefaction for biomass upgrading, in: Proceeding of the 14th European Biomass Conference, Paris, France.p:17–21. Boonstra, M. J. and B. Tjeerdsma (2006) Chemical analysis of heat treated softwoods, Holz als Roh- und Werkstoff 64: 204-211. Briens, C., J. Piskorz, and F. Berruti (2008) Biomass valorization for fuel and chemicals production—a review. International Journal of Chemical Reactor Engineering 6:1-52. Cai, W., D. Li, and R. Liu (2018) Catalytic fast pyrolysis of rice husk for bio-oil production. Energy 154: 477-487. Chandler, D. S. and F. L. P. Resende (2018)Effects of warm water washing on the fast pyrolysis of Arundo Donax. Biomass and Bioenergy 113:65-74. Chang, G., Y. Huang, J. Xie, H. Yang, H. Liu, X. Yin and C. Wu (2016) The lignin pyrolysis composition and pyrolysis products of palm kernel shell wheat straw, and pine sawdust. Energy Convers. Manag 124:587-597. Chen, W. H and P. C. Kuo (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36:803–811. Chen, Y. Q., H. Yang, Q. Yang, H. M. Hao, B., Zhu, and H. Chen (2014) Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation. Bioresource Technology 156:70-77. Chew, J. J. and V. Doshi (2011) Recent advances in biomass pretreatment-torrefaction fundamentals and technology. Renewable Sustainable Energy 15:4212–4222. Chirone, R., F. Miccio, and F. Scala (2006) Mechanism and prediction of bed agglomeration during fluidized bed combustion of a biomass fuel: Effect of the reactor scale. Chemical Engineering Journal 123:71–80. Collard, F. X. and J. Blin (2014) A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews 38:594-608. Eaton, R.A., and M.D.C. Hale (1993) Chemistry and biochemistry of decay. In: Wood decay, pests and protection. Chapman & Hall, London: 160–186. Franco, C., F. Pinto, I. Gulyurtlu and I. Cabrita (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82: 835-842. Gaojin, L. V., S. Wu, G. Yang, J. Chen, Y. Liu, and F. Kong (2013) Comparative study of pyrolysis behaviors of corn stalk and its three components. Journal of Analytical and Applied Pyrolysis 104: 185-193. Geraldo, F.D., O. R. Justo, V. H. Perez and M.Garcia-Perez (2018)Thermochemical conversion of sugarcane bagasse by fast pyrolysis: High yield of levoglucosan production. Journal of Analytical and Applied Pyrolysis 133: 246-253. Hammel, K. E., A. N. Kapich, K. A. Jensen Jr., and Z. C. Ryan (2002) Reactive oxygen species as agents of wood decay by fungi. Enz. Microb. Technol 30:445-453. Huber G. W. and A. Corma (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed., 46: 7184-7201 Huber, G.W., S. Iborra and A. Corma (2006) Synthesis of transportation fuels from biomass. Chemistry, catalysts and engineering, Chem 106: 4044–4098. IEA (2015) Status overview of torrefaction technologies: A review of the commercialisation status of biomass torrefaction. IEA (2018) Oil Market Report. update from 16 May 2018. International Energy Agency. Jellison, J., J. Connolly, B. Goodell, B.Doyle, B. Illman, F. Fekete and A. Ostrofsky (1997) The role of cations inthe biodegradation of wood by the brownrot fungi. Int Biodeterior Biodegradation39:65–79. Kataki, R., R. S. Chutia, M. Mishra, Ne. Bordoloi, R. Saikia and T. Bhaskar (2015) Recent Advances in Thermochemical Conversion of Biomass. Elsevier B.V.(Ed) Chapter 2 Feedstock Suitability for Thermochemical Processes:31-67. Kim, S. W., B. S. Koo, J. W. Ryu, J. S. Lee, C. J. Kim, D. H. Lee, G. R. Kim and S. Choi (2013) Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Processing Technology 108118–124. Kirk, T. K., R. Ibach, M. D. Mozuch, A. H.Conner and T. L. Highley (1991) Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung 45: 239–244. Kleinhans, U., C. Wieland, F. J. Frandsen, and H. Spliethoff (2018) Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior. Progress in Energy and Combustion Science 68:65-168. Lin,Y., J. Cho, G.A. Tompsett, P.R. Westmoreland, and G.W. Huber (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097-20107 Martínez, Á. T., M. S. Francisco, J. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M. J. Martínez, A. Gutiérrez, and J. C. del Río (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8:195-204. Mohan, D., C. U. Pittman, Jr. and P. H. Steele (2006) Pyrolysis of wood/Biomass for bio-oil: A critical review. Moore, A., S. Park, C. Segura and M. Carrier (2015) Fast pyrolysis of lignin-coated radiata pine.Journal of Analytical and Applied Pyrolysis 115:203-213. Mourant, D. Z.Wang, M. He, X. S. Wang, M. G. Perez, K. Ling,and C.Z. Li (2011) Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel 90(9): 2915-2922. Mun, T. Y., J. O. Kim, J. W. Kim and J. S. Kim (2011) Influence of operation conditions and additives on the development of producer gas and tar reduction in air gasification of construction woody wastes using a two-stage gasifier. Bioresource technology 102: 7196-7203. Oasmaa, A., Y. Solantausta, V. Arpiainen, E. Kuoppala, and K. Sipila (2009) Fast pyrolysis bio-oils from wood and Agricultural residues. Energy Fuels 24:1380-1388. Oasmaa, A., Y. Solantausta, V. Arpiainen, E. Kuoppala, and K. Sipilä (2010) Fast Pyrolysis Bio-Oils from Wood and Agricultural Residues. Energy Fuels 24: 1380 Pasangulapati, V., K. D. Ramachandriya, A. Kumar, M. R. Wilkins, C. L. Jones, and R. L. Huhnke (2012) Effects of cellulose, hemicellulose and lignin on thermos- chemical conversion characteristics of the selected biomass. Bioresource Tech- nology 114: 663–669. Pérez, J., J. Muñoz-Dorado, T. de la Rubia and J. Martínez (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology 5: 53–63. Pimchuai, A., A. Dutta, and P. Basu, (2010) Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24: 4638–4645. Ptasinski, K. J. (2008) Thermodynamic efficiency of biomass gasification and biofuels conversion. Biofuels Bioprod. Biorefin. 2:239-253. Rowell, R. M. and. S. L. LeVan-Green (2015) Chep.6 Thermal Properties.Handbook of Wood Chemistry and Wood Composites. Royse D. J., and J. E. Sanchez-Vazquez (2003) Influence of precipitated calcium carbonate (CaCO3) on shiitake (Lentinula edodes) yield and mushroom size. Bioresour Technol 90(2):225-228. Sadaka, S. and S. Negi (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustainable Energy 28:427-434. Sánchez, C.(2009)Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances 27:185-194. Sellin, N., D. R. Krohl, C. Marangoni and O. Souz (2016) Oxidative fast pyrolysis of banana leaves in fluidized bed reactor. Renewable Energy 96:56-64. Serrano, D., S. Sánchez-Delgado, C. Sobrino, and C. Marugán-Cruz (2015) Defluidi-zation and agglomeration of a fluidized bed reactor during Cynara cardunculus L. gasification using sepiolite as a bed material. Fuel Processing Technology 131:338–347 Shafferina, D. A. S., F. Abnisa, W. M. A. W. Daud, and M. K. Aroua (2016) A review on pyrolysis of plastic wastes. Energy Conversion and Management 115:308-326. Shafizadeh, F.(1984)The chemistry of pyrolysis and combustion. In: Rowell, R.M., (Ed.), The Chemistry of Solid Wood. Advances in Chemistry Series, Number 207. Washington, DC: American Chemical Society. Chapter 13: 489-529. Shen, D. K., and S. Gu (2009)The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol, 100: 6496-6504. Shen, D., S. Gu, and A.V. Bridgwater (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR.J Anal Appl Pyrol, 87:199-206. Shen, D., W. Jin, J. Hu, R. Xiao and K. H. Luo (2015) An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, path ways and interactions. Renewable and Sustainable Energy Reviews 51:761–774. Suzuki, M. R., C. G. Hunt, C. J. Houtman, Z. D. Dalebroux and K. E. Hammel (2006) Fungal hydroquinones contribute to brown rot of wood. Environmental Microbiology 8:2214– 2223. Tsai, W. T., M.K. Lee and Y.M. Chang (2007) Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology 98:22–28. Tumuluru, J.S., S. Sokhansanj, J. R. Hess, C.T. Wright, and R. D. Boardman (2011) A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 7:384–401. Ucar, S. and A. R.Ozkan (2008) Characterization of products from the pyrolysis of rapeseed oil cake. Bioresource Technology 99(18):8771-8776. Wang, S., G. X. Dai, H. P. Yang and H. Y. Luo (2017) Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science62:33-86. Williams, P.T. and S. Besler (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7:233-250. Xue, Y. and X.Bai (2018) Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic. Energy Conversion and Management 164: 629-638. Young, N. S.(2014)Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review. Renewable and Sustainable Energy Reviews 40:1108-1125. Yang, Y., H. Singh, B.Singh, and S.Mani (2017) Torrefaction of sorghum biomass to improve fuel properties. Bioresource Technology 232:372-379. Yelle, D. J., D. Wei, J. Ralph and K. E. Hammel (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environmental Microbiology 13(4):1091–1100. Yelle,D. J., J. Ralph, F. Lu, and K. E. Hammel (2008) Evidence for cleavage of lignin by a brown rot basidiomycete. Environmental Microbiology 10(7):1844–1849. Zulfiqar, M., B. Moghtaderi, and T. F. Wall (2006). Flow properties of biomass and coal blends. Fuel Process. Technol. 87:281–288. ECN資料庫。於2018/06取自: https://www.ecn.nl/phyllis2/Browse/Standard/ECN-Phyllis IEA Bioenergy Task 34 Direct Thermochemical Liquefaction: Bio-oil。於2018/05取自: http://task34.ieabioenergy.com/bio-oil/ UNH Bio-oil Team Report (Final Report submitted to NH IRC) (2002) Technical, Environmental and Economic Feasibility of Bio-oil in New-Hampshire's North Country. (www.unh.edu/p2/biooil/bounhif.pdf).
摘要: 
生質物快速裂解為生質物熱化學轉換程序之一,在高溫無氧的環境下快速升溫快速冷凝,以取得最大比例之液態產物,也就是生質燃油,快速裂解是一種將固態生質物轉換成液態燃料的技術。然而生質燃油未精煉前具有高酸性、高含水量以及易老化等特性,因此本研究透過生質物焙燒程序先行將生質物中之水分、酸性物質極易揮發之小分子去除,再進行快速裂解程序,以研究焙燒前處理是否提升生質燃油油品。
所有試驗均在一30 kWth氣泡式流體化床反應器中進行,並以菇類廢棄栽培基質造粒及其焙燒物為製備生質燃油之原料,以探討不同進料速率、熱裂解溫度、流體化速度、前處理溫度對生質燃油產率、含水率、pH值及組成成分之影響。由實驗結果得知,在353℃有最大熱降解峰值,主要為纖維素熱降解;隨著進料量越少、裂解溫度越高、流體化速度越高,其生質燃油產率越低。最適操作條件在裂解溫度在450℃,兩倍流體化數以及1.2 g/s之進料速率,可獲得最高之生質燃油產率,達26.43%。生質燃油之pH值隨裂解溫度之增加而增加,在裂解溫度為650℃時,其pH值可達中性。

Fast pyrolysis is a thermochemical process to convert biomass into fuels. The process requires intense heat with a shorter residence time in absence of oxygen for the high product yield of liquid oil, called bio-oil. However, without refining, crude bio-oil is a lower pH, higher moisture and aging fuel. Therefore, in order to improve the pyrolysis bio-oil, the biomass is torrefied before pyrolysis to reduce water, acetic acid and some small volatile organic compounds.
In this study, pyrolysis of the spent mushroom substrate pellets and torrefied pellets in a 30 kWth bubbling fluidized bed reactor was conducted to produce bio-oils. The effects of the feeding rate, pyrolysis temperature, fluidization velocity, and torrefied temperature on the yield rate, water content, pH and composition of the bio-oil were investigated. The maximum degrade temperature can be found at 353℃ when a large amount of cellulose was degraded. The bio-oil yield rate decreases with decreasing the feeding rate, and increasing the pyrolysis temperature and fluidization velocity. An optimal operating condition can be found when pyrolysis temperature is 450℃, the fluidization velocity is 2 times the minimum fluidization velocity, and the feeding rate at 1.2 g/s. The highest bio-oil yield is 26.43%. In addition, the pH of the bio-oil increases with increasing the pyrolysis temperatures. When pyrolysis temperature is up to 650℃, the pH of the bio-oil is almost neutral.
URI: http://hdl.handle.net/11455/98153
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-17起公開。
Appears in Collections:森林學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105033204-1.pdf8 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.