Please use this identifier to cite or link to this item:
標題: 鏈格孢菌蛋白激活子與乳化葵花油防治小白菜炭疽病的效果
Efficacy of Plant Activator from Alternaria Protein and Emulsified Sunflower Oil for Controlling Pak-choi Vegetable Anthracnose
作者: 高如沄
Ju-Yun Kao
關鍵字: 小白菜炭疽病;蛋白激活子;誘導抗病;相轉換法;乳化油;Pak-choi anthracnose;protein activator;induce resistance;phase inversion method;emulsified oil
引用: 王三太、林子凱、王毓華、蕭吉雄。2004。小白菜新品種台農2號金翠之育成。農業試驗所技術服務季刊57:12-15。 朱炯寰。2013。布袋蓮萃取物與乳化葵花油防治南方型玉米銹病的效果評估。國立中興大學植物病理學系碩士論文。74頁。 行政院農業委員會。2017。106年農業統計年報。行政院農業委員會出版。台北。373頁。 林秋琍。2001。十字花科蔬菜炭疽病菌之生物特性與防治。國立中興大學植物病理學系碩士論文。66頁。 邱柏皓、黃振文。2014。乳化植物油防治胡瓜露菌病之效果。植物病理學會刊23:277-283。 孫彩玉。2011。十字花科蔬菜炭疽病菌的病原性與存活。國立中興大學植物病理學系碩士論文。68頁。 張簡秀容。2012。小白菜 (Brassica chinensis L. var. chinensis) 種原園藝特性遺傳歧異研究。桃園區農業改良場研究彙報71:35-46。 陳哲民。1996。植物油抑制植物病原真菌胞子發芽之效果。花蓮區研究彙報12: 71-90。 黃涵、洪立。1988。台灣蔬菜彩色圖說。行政院農委會、國立台灣大學園藝系編印。210頁。 Abramoff, M. D., Magalhaes, P. J., and Ram, S. J. 2004. Image processing with ImageJ. J. Biophotonics 11: 36-42. Anton, N., Gayet, P., Benoit, J. P., and Saulnier, P. 2007. Nano-emulsions and nanocapsules by the PIT method: An investigation on the role of the temperature cycling on the emulsion phase inversion. Int. J. Pharm. 344: 44-52. Anton, N., and Vandamme, T. F. 2009. The universality of low-energy nano-emulsification. Int. J. Pharm. 377: 142-147. Bostock, R. M. 2005. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43: 545-580. Bowles, D. J. 1990. Defense-related proteins in higher-plants. Annu. Rev. Biochem. 59: 873-907. Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248-254. Burketova, L., Trda, L., Ott, P. G., and Valentova, O. 2015. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. 33: 994-1004. Cui, H. T., Tsuda, K., and Parker, J. E. 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66: 487-511. Demain, A. L., and Vaishnav, P. 2009. Production of recombinant proteins by microbes and higher organisms. Biotechnol. Adv. 27: 297-306. Dietrich, R., Ploss, K., and Heil, M. 2004. Constitutive and induced resistance to pathogens in Arabidopsis thaliana depends on nitrogen supply. Plant Cell Environ. 27: 896-906. Dong, H. S., Delaney, T. P., Bauer, D. W., and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20: 207-215. Ee, S. L., Duan, X., Liew, J., and Nguyen, Q. D. 2008. Droplet size and stability of nano-emulsions produced by the temperature phase inversion method. Chem. Eng. J. 140: 626-631. Gale, J., and Hagan, R. M. 1966. Plant Antitranspirants. Annu. Rev. Plant Physio. 17: 269-282. Goodman, R. N., Kiraly, Z., and Wood, K. R., 1986. The Biochemistry and Physiology of Plant Disease. Columbia: University of Missouri Press. Griffin, W. C. 1949. Classification of surface-active agents by 'HLB'. J. Cosmet. Sci. 1: 311-326. Grossman, T. H., Kawasaki, E. S., Punreddy, S. R., and Osburne, M. S. 1998. Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209: 95-103. Haggag, W. M. 2002. Application of epidermal coating antitranspirants for controlling cucumber downy mildew in greenhouse. Plant Pathol. 11: 69-78. Hammerschmidt, R. 2014. Introduction: Definitions and some history, pp. 1-10 In: Walters, D. R., Lyon, G. D., and Newton, A. C. [eds.], Induced Resistance for Plant Defense : A Sustainable Approach to Crop Protection. John Wiley & Sons, Ltd, UK. 327 pp. Herman, M. A. B., Restrepo, S., and Smart, C. D. 2007. Defense gene expression patterns of three SAR-induced tomato cultivars in the field. Physiol. Mol. Plant Path. 71: 192-200. Irish, B. M., Correll, J. C., and Morelock, T. E. 2002. The effect of synthetic surfactants on disease severity of white rust on spinach. Plant Dis. 86: 791-796. Jasmina, H., Džana, O., Alisa, E., Edina, V., and Ognjenka, R., 2017. Preparation of nano-emulsions by high-energy and low-energy emulsification methods. IFMBE Proceedings 62: 317-322. Jones, J. 2001. Harpin. Pesticide 12: 134-135. Kang, S. H., Cho, H. S., Cheong, H., Ryu, C. M., Kim, J. F., and Park, S. H. 2007. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). J. Microbiol. Biotechnol. 17: 96-103. Kisko, G., and Roller, S. 2005. Carvacrol and p-cymene inactivate Escherichia coli O157 : H7 in apple juice. Bmc. Microbiol. 5: 36. Ko, W. H., Wang, S. Y., Hsieh, T. F., and Ann, P. J. 2003. Effects of sunflower oil on tomato powdery mildew caused by Oidium neolycopersici. J. Phytopathol. 151: 144-148. Kumari, R., Agrawal, S. B., Singh, S., and Dubey, N. K. 2009. Supplemental ultraviolet-B induced changes in essential oil composition and total phenolics of Acorus calamus L. (sweet flag). Ecotoxicol. Environ. Safety 72: 2013-2019. Lin, T. C., Lin, C. L., Chung, W. C., Chung, K. R., and Huang, J. W. 2017. Pathogenic fungal protein-induced resistance and its effects on vegetable diseases. J. Agric. Sci. 155: 1069-1081. Lyon, G. D., Reglinski, T., and Newton, A. C. 1995. Novel disease-control compounds - the potential to immunize plants against infection. Plant Pathol. 44: 407-427. Mao, J., Liu, Q., Yang, X., Long, C., Zhao, M., Zeng, H., Liu, H., Yuan, J., and Qiu, D. 2010. Purification and expression of a protein elicitor from Alternaria tenuissima and elicitor-mediated defence responses in tobacco. Ann. Appl. Biol. 156: 411-420. Mari, M., Bautista-Baños, S., and Sivakumar, D. 2016. Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Bio. Tec. 122: 70-81. Martinelli, J. A., Brown, J. K. M., and Wolfe, M. S. 1993. Effects of barley genotype on induced resistance to powdery mildew. Plant Pathol. 42: 195-202. Mattanovich, D., Kramer, W., Luttich, C., Weik, R., Bayer, K., and Katinger, H. 1998. Rational design of an improved induction scheme for recombinant Escherichia coli. Biotechnol. Bioeng. 58: 296-298. Mcclements, D. J., and Rao, J. 2011. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51: 285-330. Montesano, M., Brader, G., and Palva, E. T. 2003. Pathogen derived elicitors: searching for receptors in plants. Mol. Plant Pathol. 4: 73-79. Nielsen, K. A., Nicholson, R. L., Carver, T. L. W., Kunoh, H., and Oliver, R. P. 2000. First touch: an immediate response to surface recognition in conidia of Blumeria graminis. Physiol. Mol. Plant Pathol. 56: 63-70. Nurnberger, T., and Lipka, V. 2005. Non-host resistance in plants: new insights into an old phenomenon. Mol. Plant Pathol. 6: 335-345. Oostendorp, M., Kunz, W., Dietrich, B., and Staub, T. 2001. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107: 19-28. Palou, L., Ali, A., Fallik, E., and Romanazzi, G. 2016. GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Tec. 122: 41-52. Pasquer, F., Isidore, E., Zarn, J., and Keller, B. 2005. Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds. Plant Mol. Biol. 57: 693-707. Percival, G. C., and Boyle, S. 2009. Evaluation of film forming polymers to control apple scab (Venturia inaequalis (Cooke) G. Wint.) under laboratory and field conditions. Crop Protect 28: 30-35. Pozo, M. J., and Azcon-Aguilar, C. 2007. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10: 393-398. Rao, J., and Mcclements, D. J. 2010. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. J. Agric. Food. Chem. 58: 7059-7066. Resende, M. L. V., Nojosa, G. B. A., Cavalcanti, L. S., Aguilar, M. A. G., Silva, L. H. C. P., Perez, J. O., Andrade, G. C. G., Carvalho, G. A., and Castro, R. M. 2002. Induction of resistance in cocoa against Crinipellis perniciosa and Verticillium dahliae by acibenzolar-S-methyl (ASM). Plant Pathol. 51: 621-628. Royle, D. J. 1975. Structural features of resistance to plant diseases, pp. 161-194. In: Friend J. and Threlfall D.R. [eds.], Biochemical Aspects of Plant-Parasite Relationships. Academic Press, New York. 368 pp. Scheffer, R. P. 1950. Anthracnose leafspot of crucifers. N. C. Ars. Tech. Bull. 92: 1-26. Shoresh, M., Harman, G. E., and Mastouri, F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu.l Rev. Phytopathol. 48: 21-43. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., and Garcia-Celma, M. J. 2005. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10: 102-110. Stout, M. J., Workman, J., and Duffey, S. S. 1994. Differential induction of tomato foliar proteins by arthropod herbivores. J. Chem. Ecol. 20: 2575-2594. Studier, F. W. 2005. Protein production by auto-induction in high-density shaking cultures. Protein Express. Purif. 41: 207-234. Sutherland, F., and Walters, D. R. 2002. Effect of film-forming polymers on infection of barley with the powdery mildew fungus, Blumeria graminis f. sp hordei. Eur. J. Plant Pathol. 108: 385-389. Tadros, T., Izquierdo, R., Esquena, J., and Solans, C. 2004. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 108: 303-318. Tawfik, S. M., Zaky, M. F., Mohammad, T. G. M., and Attia, H. A. E. 2015. Synthesis, characterization, and in vitro antifungal activity of anionic and nonionic surfactants against crop pathogenic fungi. J. Ind. Eng. Chem. 29: 163-171. Thakur, M., Bhattacharya, S., Khosla, P. K., and Puri, S. 2018. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. Appl. Res. Med. Aromat. Plants. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., Von Wettstein, D., Franken, P., and Kogel, K. H. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. P. Natl. Acad. Sci. USA 102: 13386-13391. Walters, D. R. 2006. Disguising the leaf surface: the use of leaf coatings for plant disease control. Eur. J. Plant Pathol. 114: 255-260. Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A., and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88. WHO. 1974. Toxicological evaluation of certain food additives with a review of general principles and of specifications. Seventeenth report of the joint FAO- WHO Expert Committee on Food Additives. WHO Tech. Rep. Ser. 539: 1. WHO. 1982. Evaluation of certain food additives and contaminants. WHO Tech. Rep. Ser. 683: 7. Xu, J., Banerjee, A., Pan, S. H., and Li, Z. J. 2012. Galactose can be an inducer for production of therapeutic proteins by auto-induction using E. coli BL21 strains. Protein. Expr. Purif. 83: 30-36. Yang, C. Y., Powell, C. A., Duan, Y. P., and Zhang, M. Q. 2016. Characterization and antibacterial activity of oil-in-water nanoemulsion formulation against Candidatus liberibacter asiaticus. Plant Dis. 100: 2448-2454. Zekariaoren, J., Eyal, Z., and Ziv, O. 1991. Effect of film-forming compounds on the development of leaf rust on wheat seedlings. Plant Dis. 75: 231-234. Zhang, W., Yang, X., Qiu, D., Guo, L., Zeng, H., Mao, J., and Gao, Q. 2011. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Mol. Biol. Rep. 38: 2549-2556. Ziv, O., and Frederiksen, R. A. 1983. Control of foliar diseases with epidermal coating materials. Plant Dis. 67: 212-214. Zucker, M. 1965. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiol. 40: 779-784.
在高溫潮濕的環境下,有機農場栽培的小白菜 (Brassica rapa subsp. chinensis)常遭受白菜炭疽病菌 (Colletotrichum higginsianum Sacc.) 為害,引起植株葉片出現灰褐色圓形的壞疽斑,致使受害植株喪失商品價值。近年來,社會大眾的環保意識抬頭,重視農產品的品質安全已成為國人追求的目標,因此本研究主要目的在於探討植物激活蛋白與乳化葵花油防治小白菜炭疽病的功效,祈有助於減少化學農藥的用量。本研究室林氏等人 (2017) 曾證明鏈格孢菌Alternaria alternata (Fr.) Keissl. (ALA) 的菌絲蛋白萃取液可顯著降低胡瓜炭疽病與白菜立枯病等病害的發生,並以基因轉殖之Escherichia coli ALA-01 clone加入IPTG (Isopropyl β-D-1-thiogalactopyranoside),成功生產Ape 1蛋白激活子。由於IPTG價格昂貴,本研究嘗試以1 mM半乳糖替代IPTG作為生產蛋白激活子的誘導物,結果可顯著提高Ape 1蛋白產量約20.5 %,且在製備培養基時即可加入半乳糖作為自發性誘導的材料,無需於生產過程監控菌量的變化。利用Bradford蛋白質定量法將Ape 1蛋白粗萃液定量至5 mg/ml後,於接種病原菌前3天施用Ape 1蛋白200倍稀釋液,可使鳳山白菜炭疽病罹病度由72.0%降低至50.0%左右。此外,以均質機將多種植物油乳化,發現0.2% (v/v) 之乳化葵花油可顯著降低C. higginsianum PA-01的附著器形成率;進一步以相轉換法配合不同比例之非離子型界面活性劑 (Tween 80及Span 80) 製做出各種粒徑 (約150-1100 nm) 的乳化葵花油 (emulsified sunflower oil, ESO),於溫室試驗中證實粒徑約516 nm的ESO-HLB13於接種前一天施用,有最佳防治小白菜炭疽病的功效;隨施用乳化油濃度增加,防治效果亦漸增;此外,ESO-HLB13於54±2℃儲藏14天後,仍具有高穩定性與防治功效。比較上述防治資材對炭疽病菌孢子發芽的影響,發現ESO-HLB13與界面活性劑 (HLB 13) 可抑制C. higginsianum PA-01孢子發芽與產生附著器;同時也發現處理過ESO-HLB13的孢子,於發芽後仍持續延伸,沒有形成附著器。在溫室中,利用Ape 1蛋白與乳化葵花油搭配施用,發現於小白菜株齡20天時施用Ape 1蛋白200倍稀釋液及於23天時施用0.15% (v/v) ESO-HLB13,可使小白菜炭疽病的罹病度由68.0%降至36.0%左右;另外單獨於株齡23天時施用0.15% (v/v) ESO-HLB13亦可顯著降低罹病度28.0%左右。
Rights: 同意授權瀏覽/列印電子全文服務,2021-01-14起公開。
Appears in Collections:植物醫學暨安全農業碩士學位學程

Files in This Item:
File SizeFormat Existing users please Login
nchu-108-7105049009-1.pdf3.03 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.