Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98180
標題: 臺灣中部地區紅龍果網室生產之可行性評估
Assessing the feasibility of net house production of pitaya (Hylocereus spp.) in central Taiwan
作者: 簡嬿倢
Yen-Chieh Chien
關鍵字: 仙人掌果;人工光源;成本效益分析;設施栽培;cactus fruit;artificial light;cost-benefit evaluation;protected cultivation
引用: 1.王德男、翁瑞亨、徐秀鳳. 1994. 網室木瓜倒株栽培之研究. 臺灣經濟果樹栽培技術與應用研究研討會專集. 臺中區農業改良場編印. p. 31-39. 2.王德男. 2004. 木瓜網室設施栽培, p. 293-296. 刊於:蔡金川、林俊義、沈再發、蕭吉雄主編. 設施園藝學. 台北市七星農田水利研究發展基金會. 台北. 3.方怡丹、林春良. 2012. 國內設施園藝產業發展現況與展望, p. 25-33. 刊於:蔡致榮、方煒、方怡丹、盧子淵、黃煥祺、朱峯震、楊清富、林良懋編著. 精密設施工程與植物工場實用化技術研討會專輯. 臺南區農業改良場. 臺南. 4.中央氣象局. 2018. 臺灣氣候. 氣候. <https://www.cwb.gov.tw/V7/climate/climate_info/taiwan_climate/taiwan_1.html>. 5.中華民國統計資訊網. 2018. 104年農牧業結果統計表. 農林漁牧普查. < https://www.stat.gov.tw/ct.asp?mp=4&xItem=41993&ctNode=555>. 6.申雍. 2004. 氣候物理特性與作物生育, p. 106-132. 刊於:蔡金川、林俊義、沈再發、蕭吉雄主編. 設施園藝學. 台北市七星農田水利研究發展基金會. 台北. 7.江一蘆. 2005. 攀附性仙人掌果品系分類、開花著果習性與修剪. 國立台灣大學園藝學研究所碩士論文. 台北. 8.行政院農業委員會. 2018a. 農業統計資料查詢. <http://agrstat.coa.gov.tw/>. 9.行政院農業委員會. 2018b. 農產品批發市場交易行情站. <http://amis.afa.gov.tw/main/Main.aspx/>. 10.財政部關務署. 2018. 統計資料庫查詢系統. <https://portal.sw.nat.gov.tw/APGA/GA01>. 11.吳昭其. 1988. '繁花'入菜來…復興合作農場供應仙人掌嫩花. 農業週刊 14(36):2-3. 12.邱禮弘、陳榮五. 2004. 中部地區紅龍果冬期果產期調節之研究. 台中區農業專訊 44:23-27. 13.邱一中、林筑蘋、徐敏記、留欽培、陳殷義、劉碧鵑. 2015. 紅龍果的栽培與管理. 行政院農業委員會農業試驗所. 臺南市. 臺灣. 14.倪蕙芳、黃巧雯、許淑麗、賴素玉、楊宏仁. 2013. 紅龍果莖潰瘍病之病原特性及防治藥劑篩選. 臺灣農業研究 62:225-234. 15.徐萬德. 2004. Hylocereus spp. 仙人掌紅龍果之栽培、生育習性及物候調查. 國立臺灣大學園藝學系碩士論文. 台北. 16.陳奕君、林延諭. 2016. 遮光處理對防範紅龍果肉質莖日燒傷害之研究. 臺東區農業改良場彙報 26:41-58. 17.傅炳山. 1994. 簡易設施對發育中蓮霧果實的防寒效果. 臺灣經濟果樹栽培技術與應用研究研討會專集Π. 臺中區農業改良場編印. p. 15-24. 18.黃裕益. 2004. 設施構造與機械設備, p.42-49. 刊於:蔡金川、林俊義、沈再發、蕭吉雄主編. 設施園藝學. 台北市七星農田水利研究發展基金會. 台北. 19.曾淑汾、余建美. 2015. 台灣紅龍果產業現況及輔導措施, p. 5-17. 刊於:劉碧鵑、邱國棟主編. 台灣紅龍果生產技術改進研討會專刊. 行政院農業委員會農業試驗所鳳山熱帶園藝試驗分所. 高雄市. 20.劉碧鵑. 2010. 台灣紅龍果的栽培. 行政院農業委員會農業試驗所鳳山熱帶園藝試驗分所. 高雄市. 21.蔡志濃、林筑蘋、安寶貞、鄧汀欽、廖吉彥、倪蕙芳、楊宏仁. 2013. 紅龍果的重要病害及其防治(下). 農業試驗所技術服務 96:4-7. 22.劉碧鵑、留親培. 2015. 台灣紅龍果品種選育現況與未來展望, p. 29-43. 刊於:劉碧鵑、邱國棟主編. 台灣紅龍果生產技術改進研討會專刊. 行政院農業委員會農業試驗所鳳山熱帶園藝試驗分所. 高雄市. 23.劉碧鵑、謝明樹. 2017. 紅龍果產季調節-高節能LED透明燈泡應用. 豐年:67(7):20-25. 24.盧柏松. 2008. 簡易網室栽培對臺農甜蜜桃果實品質之影響. 臺東區農業改良場研究彙報 17:9-18. 25.顏昌瑞、張鳳如. 1997. 仙人掌果紅龍(Hylocereus undatus Britt. & Rose)之產期調節. 提升果樹產業競爭力研討會專集Ш. 臺灣省台中區農業改良場. p. 163-170. 26.Arthurs, S. P., R. H. Stamps, and F. F. Giglia. 2013. Environmental modification inside photoselective shadehouses. HortScience 48:975-979. 27.Borchert, R., S. Renner, Z. Calle, D. Navarrete, A. Tye, L. Guatier, R. Spichiger, and P. von Hildebrand. 2005. Photoperiodic induction of synchronous flowering near the Equator. Nature 433:627-629. 28.Castellano, S., G. Russo, and G. Scarascia Mugnozza. 2006. The influence of construction parameters on radiometric performances of agricultural nets. Acta Hort. 718:283-290. 29.Castellano, S., G. Scarascia Mugnozza, G. Russo, D. Briassoulis, A. Mistriotis, S. Hemming, and D. Waaijenberg. 2008. Plastic nets in agriculture: A general review of types and applications. Appl. Eng. Agr. 24:799-808. 30.Chang, P. T., C. C. Hsieh, and Y. L. Jiang. 2016. Responses of 'Shih Huo Chuan' pitaya (Hylocereus polyrhizus (Weber) Britt. & Rose) to different degrees of shading nets. Sci. Hortic. 198:154-162. 31.Gruda, N. and J. Tanny. 2015. Protected crops – recent advances, innovative technologies and future challenges. Acta Hort. 1107:271-278. 32.Hemming, S., T. Dueck, J. Janse, and F. van Noort. 2008. The effects of diffuse light crops. Acta Hort. 801:1293-1300. 33.Haijun, L., S. Cohen, J. H. Lemcoff, Y. Israeli, and J. Tanny. 2015. Sap flow, canopy conductance and microclimate in a banana screenhouse. Agr. Forest Meteorol. 201:165-175. 34.Iglesias, I. and S. Alegre. 2006. The effect of anti-hail nets on fruit protection, radiation, temperature, quality and profitability of 'Mondial Gala' apples. J. Appl. Hort. 8:91-100. 35.Jiang, Y. L., Y. Y. Liao, T. S. Lin, C. L. Lee, C. R. Yen, and W. J. Yang. 2012. The photoperiod-regulated bud formation of red pitaya (Hylocereus sp.). HortScience 47:1063-1067. 36.Jiang, Y. L., Y. Y. Liao, M. T. Lin, and W. J. Yang. 2016. Bud development in response to night-breaking treatment in the noninductive period in red piaya (Hylocereus sp.). HortScience 51:690-696. 37.Khaimov, A. and Y. Mizrahi. 2006. Effects of day-length, radiation, flower thinning and growth regulators on flowering of the vine cacti Hylocereus undatus and Selenicereus megalanthus. J. Hortic. Sci. Biotech. 81:465-470. 38.Khaimov-Armoza, A., O. Novák, M. Strnad, and Y. Mizrahi. 2012. The role of endogenous cytokinins and environmental factors in flowering in the vine cactus Hylocereus undatus. Israel J. Plant Sci. 60:371-383. 39.Kittas, C., N. Katsoulas, V. Rigakis, T. Bartzanas, and E. Kitta. 2012. Effects on microclimate, crop production and quality of a tomato crop grown under shade nets. J. Hort. Sci. Biotechnol. 87:7-12. 40.Kitta, E., A. D. Baille, N. Katsoulas, N. Rigakis, and M. M. González-Real. 2014. Effects of cover optical properties on screenhouse radiative environment and sweet pepper productivity. Biosystems Engng. 122:115-12. 41.Le Bellec, F. and F. Vaillan. 2011. Pitahaya (pitaya) (Hylocereus spp.), p. 247-271. In: Yahia E. (ed.). Postharvest biology and technology of tropical and subtropical fruits. 42.Mizrahi, Y., A. Nerd., and P. S. Nobel. 1997. Cacti as crops. Hort. Rev. 8:291-391. 43.Montero, J., I. Antón, J. Hernández, and N. Castilla. 2001. Direct and diffuse light transmission of insect-proof screens and plastic films for cladding greenhouses. Acta Hort. 559:203-209. 44.Middleton, S. and A. McWaters. 2002. Hail netting of apple orchards - Australian experience. Compact Fruit Tree 35:51-55. 45.Möller, M., J. Tanny, S. Cohen, and M. Teitel. 2003. Micrometeorological characterization in a screenhouse. Acta Hort. 614:445-451. 46.Möller, M. and S. Assouline. 2007. Effects of a shading screen on microclimate and crop water requirements. Irr. Sci. 25:171-181. 47.Möller, M., S. Cohen, M. Pirkner, Y. Israeli, and J. Tanny. 2010. Transmission of short-wave radiation by agricultural screens. Biosystems Engng. 107:317-327. 48.Mupambi, G., B. M. Anthony, D. R. Layne, S. Musacchi, S. Serra, T. Schmidt, and L. A. Kalcsits. 2018. The influence of protective netting on tree physiology and fruit quality of apple: A review. Scientia Hort. 236:60-72. 49.Nerd, A., N. Tel-Zur, and Y. M. Nobel. 2002. Fruits of Vine and Columnar Cacti, p. 185-198. In: Nobel, P. S. (eds.). Cacti Biology and Uses. Univ. of California Press, London, England. 50.Nobel, P. S. and E. De la Barrera. 2002. High temperatures and net CO2 uptake, growth, and stem damage for the hemiepiphytic cactus Hylocereus undatus. Biotropica 34:225-231. 51.Nobel, P. S. and E. Dela Barrera. 2004. CO2 uptake by the cultivated hemiepiphytic cactus, Hylocereus undatus. Ann. Appl. Biol. 144:1-8. 52.Nomura, K., M. Ide, T. Ashida, and Y. Yonemoto. 2010. Seasonal differences in diurnal patterns of metabolites and enzyme activities in pitaya (Hylocereus undatus) grown in a temperate zone. J. Japan. Soc. Hort. Sci. 79:135-140. 53.Rossel, H. and J. Ferguson. 1979. A new and economical screenhouse for virus research in tropical areas. FAO Protection Bul. 27:74-76. 54.Raveh, E., A. Nerd, and Y. Mizrahi. 1998. Responses of two hemiepiphytic fruit crop cacti to different degrees of shade. Sci. Hortic. 73:151-164. 55.Shahak, Y., E. E. Gussakovsky, E. Gal, and R, Ganelevin. 2004. ColoerNets: Crop protection and light quality manipulation in one technology. Acta Hort. 659:143-151. 56.Tanny, J., S. Cohen, A. Grava, A. Naor, and V. Lukyanov. 2009. The effect of shading screens on microclimate of apple orchards. Acta Hort. 807:103-108. 57.Tanny, J., S. Cohen, and M. Teitel. 2003. Screenhouse microclimate and ventilation: an experimental study. Biosyst. Eng. 84:331-341. 58.Tanny, J., S. Cohen, and Y. Israeli. 2012. Screen constructions: Microclimate and water use in Israel. Acta Hort. 927:515-528. 59.Tanny, J., M. Teitel, M. Barak, Y. Esquira, and R. Amir. 2008. The effects of screenhouse height on microclimate. Acta Hort. 801:107-114. 60.Tanny, J. 2013. Microclimate and evapotranspiration of crops covered by agricultural screens: A review. Biosyst. Eng. 114:26-43. 61.Tran, D., C. Yen, and Y. H. Chen. 2015a. Effects of bagging on fruit characteristics and physical fruit protection in red pitaya (Hylocereus spp.). Biol. Agric. Hortic. 31:158-166. 62.Tran, D. H., C. R. Yen, and Y. K. H. Chen. 2015b. Flowering response of a red pitaya germplasm collection to lighting addition. Intl. Scholarly Scientific Res. Innov. 9:175-179. 63.Weiss, J., A. Nerd, and Y. Mizrahi. 1994. Flowering behavior and pollination requirements in climbing cacti with fruit crop potential. HortScience 29: 1487-1492.
摘要: 
臺灣紅龍果主要栽培品種為'越南白肉種'(Hylocereus undatus)及紅肉種'大紅'(Hylocereus sp. 'Da Hong'),其生產受自然環境因素影響,正期果集中於夏、秋兩季;春、冬果的生產有賴於夜間電照以進行產期調節。為減少套袋成本,本研究於臺灣紅龍果主要栽培地區─中部應用網室設施於'越南白肉種'及'大紅'紅肉種紅龍果栽培,並建立網室內微氣候、萌花物候期、果實品質及病蟲害等基礎資料,以綜合評估網室栽培於生產'越南白肉種'及'大紅'紅肉種紅龍果正期果及產調果之可行性。
  '越南白肉種'正期果生產期間,16目及24目網室內正午太陽輻射(solar radiation; SRD)分別為露天對照組之78.12%及75.03%;光合有效光通量密度(photosynthetic photon flux density; PPFD)則為76.03%及73.00%。春季產期調節期間,16目及24目網室內之全日SRD通透率為77.3%及69.3%;全日PPFD者則分別為77.5%及73.9%。秋季產調時,16目及24目網室內之全日SRD通透率為69.2%及68.7%,而全日PPFD者則為70.2%及62.3%。夏季網室內最高溫常高於露天對照組。
  網室內正期首波來花時間(6月12日)及最終萌花時間(9月11日)均與露天對照組相同,且其累計萌花率無嚴重不良影響。相較於對照組,網室栽培可於春、秋季有較多產調批次,網室與燈具之處理組合間催花率有別,其中以16目網室搭配鎢絲燈處理具最佳催花效果。
  '越南白肉種'正期網室果實果皮顏色較露天對照組差,但仍可為市場所接受。16目網室夏果重量顯著高於露天對照組,且不影響果實平均或果心糖度,亦不影響可滴定酸度。春季網室果實果皮顏色之L*值較露天對照組為低;其果重及果心糖度較露天者低但酸度較高。露天秋果顏色a*較高,然網室內果實亦無轉色問題,果重及橫徑以露天者為高,因果實成熟度差異,處理間果心糖度差異幾乎不顯著。固定型網室可阻隔部分大型害蟲,且病害與日燒無嚴重發生,另有減風、抗颱之效。
  '大紅'紅龍果(Hylocereus sp. 'Da Hong')主要正期萌花、結實期間,16目防蟲網下之SRD通透率為80.4%;PPFD通透率則為74.4%。春季產調時,網室內SRD及PPFD之通透率為80.8%及76.5%;秋季產調期間分別為74.4%及68.1%。16目網室之每日最高溫及平均溫於正期果生產期間高於露天對照組;春、秋兩季中,露天對照組及網室內之最高溫、平均溫及電照夜溫則無顯著差異。
  網室栽培下,'大紅'正期首波來花時間(4月16日)與露天對照組相同,末批花則於10月15日萌發。網室栽培對正期累計萌花率無不良影響,且於產期調節上有提早萌花高峰(春季)、增加萌花批次(春季、秋季)及提升萌花率(秋季)之正向效果。省電燈泡於春季產調上具替代鎢絲燈潛力;惟秋季時仍以鎢絲燈較具催花效力,此可歸因於燈具佈光及光質特性。
  '大紅'正期果(夏、秋季)果皮亮度(L*)以露天對照組較高、果色則以網室者較紅(a*值高、b*值低)。網室夏果品質與露天並無差異;然秋果於縱橫徑、重量及酸度表現顯著低於露天對照組。春季露天果實之縱橫徑、果重及果肉率、果肉可溶性固形物濃度均優於網室且酸度較低。春季產調產量以夜間電照處理較無電照者高,且露天對照組高於網室;秋季產調則以網室栽培較具經濟效益。16目網室栽培可減少大部分蟲害,並可減緩'大紅'日燒生理障礙發生。
  本研究已基本確立應用16目防蟲網網室於'越南白肉種'及'大紅'紅龍果栽培、正期果生產之可行性及其穩定產期調節之重要性,未來應有助於中部地區紅龍果網室栽培及週年生產策略之制訂。

The main cultivars of pitaya in Taiwan are white pitaya (Hylocereus undatus) and red pitaya (Hylocereus sp. 'Da Hong'). Its production is affected by natural environmental factor. The natural harvest seasons are summer and autumn, while the off-season production in spring and winter depend on the successful night-lighting. To reduce the bagging costs by hand, applications of net-houses on white and red pitaya cultivation were used in main production region, central Taiwan. This study aimed to establish the basic information on microclimate, reproductive phenological stage, fruit qualities, and the kinds and incidences of pests and diseases under the net-houses, and comprehensively evaluate feasibility of natural-inductive and off-season production on white pitaya and red pitaya 'Da Hong'.
  During the natural-inductive period of white pitaya (Hylocereus undatus), the 16- and 24-mesh screens shielded 21.88% and 24.97% of solar radiation, and isolated 23.97% and 27.00% of photosynthetic photon flux density (PPFD) in midday, respectively, while during the off-season production of white pitaya, the 16-mesh and 24-mesh shielded 22.7% and 30.7% of diurnal solar radiation, and 22.5% and 26.1% of daily PPFD relative to the field in spring, whereas 30.8% and 31.3% of diurnal solar radiation and 29.8% and 37.7% of daily PPFD in autumn. The daily maximum temperatures under the net-houses were higher than in the open-field during summer.
  Whether pitayas were grown under the net-houses or open-field, the times of the first and the last flowering wave were the same. Besides, facilities had no immoderately harmful effect on accumulative floral bud emergence percentage. The more waves of off-season flower buds in the net-houses during off-season period were recorded than in the field. There was more inter-variation in both induction of flower buds and fruit characteristics between 16- or 24-mesh net house; More efficiency of incandescent bulb (IB) to induce the flower bud than compact fluorescent bulb (CFB) was found.
  Though the fruit coloring of net-houses was inferior to the field, but it is still acceptable in the market. In summer, the fruit weights of 16-mesh net-house were significantly heavier than them of open-field, and cultivation under 16-mesh screen didn't impact average and center total soluble solid contents and titratable acidity. Peel L* value of fruits in spring produced under net-houses was inferior to the field, but it is still acceptable in the market. Besides, the weight and sugar content of were lower, whereas titratable acidity were higher relative to the field. Through night-breaking in the autumn, the off-season fruits harvested on Dec. 16, 2016. Peel a* values of fruit in the field were higher than those of the net-houses, but the fruit coloring under net-houses was well. Fruit weight and diameter of the field were higher when compared to those of the 16-mesh. Due to the variation of maturity, central TSS contents among six treatments were hardly significantly different. Incidence of pest under the fixed net-houses was significant lower than the field, even though severe susceptibility of diseases and sun-burning wasn't recorded. Besides, fixed net-house cultivation could reduce damages caused by typhoon.
  During the red pitaya (Hylocereus sp. 'Da Hong') natural-inductive period, the transmittances of solar radiation and PPFD through 16-mesh insect-proof screen were 80.4% and 74.4%, respectively. In spring, the solar radiation and PPFD transmittances through screen were 80.8% and 76.5%, whereas that in autumn were 74.4% and 68.1%. The maximum and average temperatures under the net-house were higher than in the field in natural production period, while the maximum and average temperatures and them during night-lighting period among treatments were not significantly different, either in spring or in autumn.
  Red pitaya had the same time of the first flowering wave among treatments, and the last flowering time of net-house cultivation was at Oct, 15,2017. The net-house cultivation had no harmful effect on accumulative floral bud emergence percentage. In terms of production regulation, net-house cultivation promoted the flowering time earlier (in spring), increased flowering wave (in spring and autumn) and floral buds emergence (in autumn). Using CFBs to flower-forcing could be a potential practice in spring, though to stabilize flowering in autumn, IBs were needed because of its light distribution and quality.
  The fruit coloring of red pitaya 'Da Hong' grown under the net-house was superior, but the peel lightness was less in net-house than in field. No matter the cultivation system, no difference on qualities of summer fruits were observed. The autumn fruits were significantly smaller, lighter but less sour in net-house than in open-field. Spring fruit of open-field represented higher values in longitudinal and transverse diameters, weight, edible part, and soluble sugar contents, whereas titratable acidity was lower than those in net-house. In spring, the estimated yield of off-season production in open-field was better than in net-house; contrarily, that in net-house cultivation showed economic performance in autumn. The 16-mesh net-house could exclude most pests and reduce shoot sunburn occurrence of 'Da Hong'.
  In conclusion, this study founded that applying the16-mesh insect-proof net-house to cultivate white pitaya and red pitaya 'Da Hong' was feasible for natural harvest and its importance to stabilize off-season production. It could benefit for the future net-house cultivation of pitaya and drawing up the strategies to reach annual production in central Taiwan.
URI: http://hdl.handle.net/11455/98180
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-30起公開。
Appears in Collections:園藝學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7104032118-1.pdf12.34 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.