Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98196
標題: 台灣豬場第一基因型日本腦炎病毒之分子流行病學監測及種母豬施打第三基因型日本腦炎活性減毒疫苗對第一基因型日本腦炎病毒之保護效用分析
Molecular Surveillance of Genotype I Japanese Encephalitis Virus in Pig Farms and Vaccine Effectiveness of Live-attenuated Genotype III Japanese Encephalitis Virus Vaccine Against Genotype I Virus in Sows
作者: 陳怡瑩
Yi-Ying Chen
關鍵字: 第一基因型日本腦炎病毒;分子流行病學監測;養豬場;日本腦炎疫苗效用;Genotype I Japanese Encephalitis Virus;Molecular Surveillance;Pig farms;Vaccine Effectiveness
引用: Arai, S., Matsunaga, Y., Takasaki, T., Tanaka-Taya, K., Taniguchi, K., Okabe, N., Kurane, I., Japan, V.P.D.S.P.o., 2008. Japanese encephalitis: surveillance and elimination effort in Japan from 1982 to 2004. Japanese journal of infectious diseases 61, 333-338. Asahina, S., Noguchi, K., 1968. Long distance flight of Culex tritaeniorynchus. Japanese Journal of Sanitary Zoology 19, 110. Beasley, D.W., Li, L., Suderman, M.T., Guirakhoo, F., Trent, D.W., Monath, T.P., Shope, R.E., Barrett, A.D., 2004. Protection against Japanese encephalitis virus strains representing four genotypes by passive transfer of sera raised against ChimeriVax-JE experimental vaccine. Vaccine 22, 3722-3726. Becher, P., Orlich, M., Thiel, H.-J., 2001. RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease. Journal of virology 75, 6256-6264. Buescher, E.L., Scherer, W.F., Rosenberg, M., Gresser, I., Hardy, J., Bullock, H., 1959. Ecologic studies of Japanese encephalitis virus in Japan. The American journal of tropical medicine and hygiene 8, 651-664. Burns, K.F., 1950. Congenital Japanese B encephalitis infection of swine. Proceedings of the society for experimental biology and medicine 75, 621-625. Chen, W.-R., Rico-Hesse, R., Tesh, R.B., 1992. A new genotype of Japanese encephalitis virus from Indonesia. The American journal of tropical medicine and hygiene 47, 61-69. Chen, Y.-Y., Fan, Y.-C., Tu, W.-C., Chang, R.-Y., Shih, C.-C., Lu, I.-H., Chien, M.-S., Lee, W.-C., Chen, T.-H., Chang, G.-J., 2011. Japanese encephalitis virus genotype replacement, Taiwan, 2009–2010. Emerging infectious diseases 17, 2354. Chiang, W.W., Chuang, C.K., Chao, M., Chen, W.J., 2014. Cell type-dependent RNA recombination frequency in the Japanese encephalitis virus. Biomed research international 2014, 471323. Ding, D., Hong, Z., Zhao, S.-j., Clemens, J.D., Zhou, B., Wang, B., Huang, M.-s., Zeng, J., Guo, Q.-h., Liu, W., 2007. Long-term disability from acute childhood Japanese encephalitis in Shanghai, China. The American journal of tropical medicine and hygiene 77, 528-533. Fan, Y.-C., Chen, J.-M., Chen, Y.-Y., Lin, J.-W., Chiou, S.-S., 2013. Reduced neutralizing antibody titer against genotype I virus in swine immunized with a live-attenuated genotype III Japanese encephalitis virus vaccine. Veterinary microbiology 163, 248-256. Fan, Y.-C., Chen, J.-M., Chiu, H.-C., Chen, Y.-Y., Lin, J.-W., Shih, C.-C., Chen, C.-M., Chang, C.-C., Chang, G.-J.J., Chiou, S.-S., 2012. Partially neutralizing potency against emerging genotype I virus among children received formalin-inactivated Japanese encephalitis virus vaccine. PLoS neglected tropical diseases 6, e1834. Fauquet, C., Fargette, D., 2005. International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virology journal 2, 64. Fischer, M., Lindsey, N., Staples, J.E., Hills, S., Control, C.f.D., Prevention, 2010. Japanese encephalitis vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR recommendations and reports 59, 1-27. Fulmali, P.V., Sapkal, G.N., Athawale, S., Gore, M.M., Mishra, A.C., Bondre, V.P., 2011. Introduction of Japanese encephalitis virus genotype I, India. Emerging infectious diseases 17, 319. Gould, E., Moss, S., Turner, S. 2004. Evolution and dispersal of encephalitic flaviviruses, In: Emergence and control of zoonotic viral encephalitides. Springer, 65-84. Grossman, R.A., Edelman, R., Willhight, M., Pantuwatana, S., Udomsakdi, S., 1973. Study of Japanese Encephalitis Virus in Chiangmai Valley, Thailand: III. Human seroepidemiology and inapparent infections. American journal of epidemiology 98, 133-149. Hahn, C.S., Lustig, S., Strauss, E.G., Strauss, J.H., 1988. Western equine encephalitis virus is a recombinant virus. Proceedings of the national academy of sciences 85, 5997-6001. Halstead, S.B., Thomas, S.J., 2010. New vaccines for Japanese encephalitis. Current infectious disease reports 12, 174-180. Hasegawa, H., Yoshida, M., Fujita, S., Kobayashi, Y., 1994. Comparison of structural proteins among antigenically different Japanese encephalitis virus strains. Vaccine 12, 841-844. Hsu, S., Huang, W., Cross, J., 1978. The isolation of Japanese encephalitis virus from Taiwan mosquitoes by mosquito cell cultures and mouse inoculation. Journal of medical entomology 14, 698-701. Hsu, S.T., Chang, L.C., Lin, S.Y., Chuang, T.Y., Ma, C.H., Inoue, Y.K., Okuno, T., 1972. The effect of vaccination with a live attenuated strain of Japanese encephalitis virus on stillbirths in swine in Taiwan. Bull world health organ 46, 465-471. Huang, C., 1982. Studies of Japanese encephalitis in China. Adv Virus Res 27, 71-101. Huang, J.-H., Lin, T.-H., Teng, H.-J., Su, C.-L., Tsai, K.-H., Lu, L.-C., Lin, C., Yang, C.-F., Chang, S.-F., Liao, T.-L., 2010. Molecular epidemiology of Japanese encephalitis virus, Taiwan. Emerging infectious diseases 16, 876. Igarashi, A. 2002. Control of Japanese encephalitis in Japan: immunization of humans and animals, and vector control, In: Japanese encephalitis and West nile viruses. Springer, 139-152. Kalinina, O., Norder, H., Mukomolov, S., Magnius, L.O., 2002. A natural intergenotypic recombinant of hepatitis C virus identified in St. Petersburg. Journal of virology 76, 4034-4043. King, A.M., McCahon, D., Saunders, K., Newman, J.W., Slade, W.R., 1985. Multiple sites of recombination within the RNA genome of foot-and-mouth disease virus. Virus research 3, 373-384. Kuno, G., Chang, G.-J.J., Tsuchiya, K.R., Karabatsos, N., Cropp, C.B., 1998. Phylogeny of the genus Flavivirus. Journal of virology 72, 73-83. Leach, D.R., 1996. Genetic recombination. Blackwell Science Ltd. Li, M.-H., Fu, S.-H., Chen, W.-X., Wang, H.-Y., Guo, Y.-H., Liu, Q.-Y., Li, Y.-X., Luo, H.-M., Da, W., Ji, D.Z.D., 2011. Genotype V Japanese encephalitis virus is emerging. PLoS neglected tropical diseases 5, e1231. Liu, X., Yu, Y., Li, M., Liang, G., Wang, H., Jia, L., Dong, G., 2011. Study on the protective efficacy of SA14-14-2 attenuated Japanese encephalitis against different JE virus isolates circulating in China. Vaccine 29, 2127-2130. Mani, T., Rao, C.M., Rajendran, R., Devaputra, M., Prasanna, Y., Gajanana, A., Reuben, R., 1991. Surveillance for Japanese encephalitis in villages near Madurai, Tamil Nadu, India. Transactions of the royal society of tropical medicine and hygiene 85, 287-291. Mann, B.R., McMullen, A.R., Swetnam, D.M., Barrett, A.D., 2013. Molecular epidemiology and evolution of West Nile virus in North America. International journal of environmental research and public health 10, 5111-5129. Martin, D.P., Murrell, B., Golden, M., Khoosal, A., Muhire, B., 2015. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus evolution 1, vev003. Murray, C.L., Jones, C.T., Rice, C.M., 2008. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nature reviews microbiology 6, nrmicro1928. Nabeshima, T., Loan, H.T., Inoue, S., Sumiyoshi, M., Haruta, Y., Nga, P.T., Huoung, V.T., del Carmen Parquet, M., Hasebe, F., Morita, K., 2009. Evidence of frequent introductions of Japanese encephalitis virus from south-east Asia and continental east Asia to Japan. Journal of general virology 90, 827-832. Ni, H., Barrett, A.D., 1995. Nucleotide and deduced amino acid sequence of the structural protein genes of Japanese encephalitis viruses from different geographical locations. Journal of general virology 76, 401-407. Ni, H., Barrett, A.D., 1996. Molecular differences between wild-type Japanese encephalitis virus strains of high and low mouse neuroinvasiveness. Journal of general virology 77 1449-1455 Nitatpattana, N., Dubot-Pérès, A., Gouilh, M.A., Souris, M., Barbazan, P., Yoksan, S., De Lamballerie, X., Gonzalez, J.-P., 2008. Change in Japanese encephalitis virus distribution, Thailand. Emerging infectious diseases 14, 1762. Norberg, P., Roth, A., Bergstrom, T., 2013. Genetic recombination of tick-borne flaviviruses among wild-type strains. Virology 440, 105-116. Pérez-Losada, M., Arenas, M., Galán, J.C., Palero, F., González-Candelas, F., 2015. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infection, Genetics and evolution 30, 296-307. Pan, X.-L., Liu, H., Wang, H.-Y., Fu, S.-H., Liu, H.-Z., Zhang, H.-L., Li, M.-H., Gao, X.-Y., Wang, J.-L., Sun, X.-H., 2011. The emergence of genotype I of Japanese encephalitis virus as the dominant genotype in Asia. Journal of virology, JVI. 00825-00811. Parida, M., Dash, P.K., Tripathi, N.K., 2006. Japanese encephalitis outbreak, India, 2005. Emerging infectious diseases 12, 1427. Ritchie, S.A., Rochester, W., 2001. Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia. Emerging infectious diseases 7, 900. Robertson, D.L., Hahn, B.H., Sharp, P.M., 1995. Recombination in AIDS viruses. Journal of molecular evolution 40, 249-259. Solomon, T., Ni, H., Beasley, D.W., Ekkelenkamp, M., Cardosa, M.J., Barrett, A.D., 2003. Origin and evolution of Japanese encephalitis virus in southeast Asia. Journal of virology 77, 3091-3098. Su, C.-L., Yang, C.-F., Teng, H.-J., Lu, L.-C., Lin, C., Tsai, K.-H., Chen, Y.-Y., Chen, L.-Y., Chang, S.-F., Shu, P.-Y., 2014. Molecular epidemiology of Japanese encephalitis virus in mosquitoes in Taiwan during 2005–2012. PLoS neglected tropical diseases 8, e3122. Takahashi, K., 1968. Effects of immunization of swine upon the ecological cycle of Japanese encephalitis virus. I. Preliminary report. Tropical medicine 10, 181-194. Takhampunya, R., Kim, H.-C., Tippayachai, B., Kengluecha, A., Klein, T.A., Lee, W.-J., Grieco, J., Evans, B.P., 2011. Emergence of Japanese encephalitis virus genotype V in the Republic of Korea. Virology journal 8, 449. Van den Hurk, A.F., Ritchie, S.A., Mackenzie, J.S., 2009. Ecology and geographical expansion of Japanese encephalitis virus. Annual review of entomology 54, 17-35. Vasilakis, N., Deardorff, E.R., Kenney, J.L., Rossi, S.L., Hanley, K.A., Weaver, S.C., 2009. Mosquitoes put the brake on arbovirus evolution: experimental evolution reveals slower mutation accumulation in mosquito than vertebrate cells. PLoS pathogens 5, e1000467. Vaughn, D.W., Hoke Jr, C.H., 1992. The epidemiology of Japanese encephalitis: prospects for prevention. Epidemiologic reviews 14, 197-221. Wang, H.Y., Takasaki, T., Fu, S.H., Sun, X.H., Zhang, H.L., Wang, Z.X., Hao, Z.Y., Zhang, J.K., Tang, Q., Kotaki, A., 2007. Molecular epidemiological analysis of Japanese encephalitis virus in China. Journal of general virology 88, 885-894. Wang, S.-P., Grayston, J., Hu, S., 1962. Encephalitis on Taiwan. III. Virus isolations from mosquitoes. American journal of tropical medicine and hygiene 11, 141-148. Worobey, M., Holmes, E.C., 1999. Evolutionary aspects of recombination in RNA viruses. Journal of general virology 80, 2535-2543. Yoshida, I., Takagi, M., Inokuma, E., Goda, H., Ono, K., Takaku, K., Oku, J., Kunita, N., Amano, T., Okuno, Y., 1981. Establishment of an attenuated ML-17 strain of Japanese encephalitis virus. Biken journal 24, 47-67. Yoshikawa, A., Nabeshima, T., Inoue, S., Agoh, M., Morita, K., 2016. Molecular and serological epidemiology of Japanese encephalitis virus (JEV) in a remote island of western Japan: an implication of JEV migration over the East China Sea. Tropical medicine and health 44, 8. Yun, S.-M., Cho, J.E., Ju, Y.-R., Kim, S.Y., Ryou, J., Han, M.G., Choi, W.-Y., Jeong, Y.E., 2010. Molecular epidemiology of Japanese encephalitis virus circulating in South Korea, 1983-2005. Virology journal 7, 127. Zhao, Z., Date, T., Li, Y., Kato, T., Miyamoto, M., Yasui, K., Wakita, T., 2005. Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. Journal of general virology 86, 2209-2220.
摘要: 
日本腦炎病毒在亞洲地區主要流行的病毒株已由第三基因型轉變為第一基因型,2008年台灣疾病管制局首次於台北濕地及宜蘭地區分離到第一基因型日本腦炎病毒,而後台灣日本腦炎病毒分離株多為第一基因型病毒,2012年於台北溼地最後一次監測到第三基因型病毒,然而之後第一與第三基因型日本腦炎病毒的更迭仍屬未知。因此,本研究主要研究目的為瞭解台灣日本腦炎病毒發生基因型轉變之後,新興的第一基因型日本腦炎病毒隨後的流行及演化的趨勢,以及種母豬所施打第三基因型日本腦炎病病毒活性減毒疫苗對流行之第一基因型病毒之疫苗保護效用。
首先,本研究於2009~2018年的田間研究中,共在養豬場收集的三斑家蚊上檢測出80池日本腦炎病毒陽性,均為第一基因型日本腦炎病毒。進一步經由E蛋白基因進行親緣演化分析台灣分離之第一基因型日本腦炎病毒依其演化分支分屬於Subcluster I 及Subcluster II病毒,且所有病毒均源自於2009年台灣所分離之第一基因型日本腦炎病毒,推論第一基因型病毒在台灣已形成地方性流行。經由分離率之相對百分比分析發現第一基因型日本腦炎病毒Subcluster I於2015~2018年較Subcluster II具優勢,推論在台灣第一基因型日本腦炎病毒不同Subcluster型別可能產生病毒競爭的現象。因於同一養豬場同時分離到第一基因型日本腦炎病毒Subcluster I及Subcluster II有可能造成病毒重組機會,因此選擇代表性第一基因型日本腦炎病毒分離株進行全長序列定序分析,結果發現原屬於Subcluster I的TC2015-5、YL1206a病毒株在部分核苷酸特異位與Subcluster II病毒之核苷酸相同,以生物分析軟體RDP Beta 4.0版本分析後發現,TC2015-5主要與同為Subcluster I 型別之TC2015-4相似,但其結構蛋白核苷酸位置443~1004區間則與Subcluster II 型別之TC2012-4相似;而YL1206a主要與同為Subcluster I 型別之TC2009-1相似,但其結構蛋白核苷酸位置1~1387則與Subcluster II 型別之YL2009-4相似;此結果表示在同一地區共同流行的日本腦炎病毒可能產生病毒重組的現象。最後為了探討基因型轉變後豬隻用第三基因型日本腦炎活性減毒疫苗是否對於第一基因型病毒感染仍具保護效用,調查發現種母豬有施打日本腦炎疫苗時於第一基因型日本腦炎病毒流行期間造成的流產率為11.2%,未施打日本腦炎疫苗的種母豬流產率為36%,以此推算疫苗保護效用為68.8% (95%信賴區間為50.2%~80.5%);於流行期間施打疫苗種母豬流產胎兒檢出日本腦炎病毒的陽性率為2.2%,未施打疫苗種母豬流產胎兒日本腦炎病毒陽性率為8.8%,以此推算疫苗效用為74.8%(95%信賴區間為0~95.6%);本研究觀察之日本腦炎疫苗對於第一基因型日本腦炎病毒保護效力明顯低於Hsu等人於1972年發表日本腦炎活性減毒疫苗對於第三基因型病毒之疫苗保護效用95.6%。
綜合上述研究結果顯示,第一基因型日本腦炎病毒在台灣地區已為地方流行性傳播,且具有病毒重組之現象,現行活性減毒日本腦炎病毒疫苗對於第一基因型病毒僅具部分保護能力,因此有必要持續觀測日本腦炎病毒的流行情形,並評估第一基因型日本腦炎病毒來源動物用疫苗。

The dominant genotype III (GIII) Japanese encephalitis virus (JEV) has been replaced by genotype I (GI) virus in East and Southeast Asian regions. In Taiwan, the GI JEVs were first isolated in mosquitoes captured from the wetlands of Taipei City and Yilan county in 2008. While GI JEVs have gradually became the dominant genotype in Taiwan, GIII JEV was still detected in two of the most recent isolates in 2012. However, the epidemiology of GI and GIII JEVs in Taiwan remains unknown, hence the aims of this study were (i) to understand the epidemiology and evolution of the emerging GI JEVs in Taiwan after genotype replacement, and (ii) to estimate vaccine effectiveness of live-attenuated GIII JEV vaccine against GI virus in sows.
Initially, we conducted JEV surveillance among mosquitoes collected from pig farms in Taiwan from 2009 until 2018. A total of 80 Culex tritaeniorhynchu mosquito pools were positive for GI JEV. These GI viruses were further classified into two subclusters namely, subclusters I and II in the phylogenetic tree analysis using nucleotide sequences of the viral envelope (E) proteins. Either GI subcluster I or II isolates showed an evolutionary association with 2009 isolates, suggesting the endemicity of GI JEV in Taiwan. Results also showed that GI subcluster I isolates were more dominant than subcluster II between 2015 and 2018, while co-circulation of the two subclusters was observed in one pig farm. This inferred the possibility of competition and genetic recombination between the two GI subclusters thus, we analysed and compared the complete genome of selected Taiwan JEV GI subclusters I and II. Interestingly, partial sequences of GI subcluster I TC2015-4 and YL1206a strains were found to be homologous to subclubster II. The possible recombination of TC2015-4 and YL1206a strains was supported by the analysis from Recombination Detection Program (RDP ver 4.0 Beta). Nucleotide positions 443-1004 of TC2015-5 were similar to subcluster II TC2012-4 strain, while the remaining nucleotides were similar to subcluster I TC2015-4 strain. The 5' terminus-1387 nucleotide sequences of the YL1206a strain were similar to YL2009-4 strain, while the remaining nucleotides were similar to GI subcluster I TC2009-1 strain. Results showed that JEV recombination was observed among isolates in co-circulation. Lastly, we investigated the vaccine effectiveness of live-attenuated GIII JEV vaccine in sows after genotype shift. The estimated abortion rates during GI-virus epidemic season was shown to be 11.2% and 36% among vaccinated and non-vaccinated sows, respectively, with vaccine effectiveness presented as 68.8% (50.2~80.5%, 95% confidence interval). JEV was detected in stillborn/aborted fetus samples among vaccinated (2.2%) and non-vaccinated (8.8%) sows. The vaccine effectiveness was 74.8% (0~95.6%, 95% confidence interval). In this study, live-attenuated GIII JEV vaccine exhibited significantly lower vaccine effectiveness against GI virus than GIII virus in sows. This is in contrast to the results of Hsu and colleagues (1972) whose vaccine effectiveness was 95.6% against GIII virus.
Taken all data together, these results showed the endemicity of GI JEV in Taiwan, which could have evolved from genetic recombination of JEVs. Further, the current live-attenuated GIII JEV vaccine provided partial protection against GI virus in sows. Finally, research on the epidemiology of JE viruses in Taiwan is crucial to evaluate and establish possible GI-virus derived JEV vaccines in the future.
URI: http://hdl.handle.net/11455/98196
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-27起公開。
Appears in Collections:微生物暨公共衛生學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-8100046001-1.pdf2.42 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.