Please use this identifier to cite or link to this item:
標題: 昆蟲特異性黃病毒膜蛋白特性與結構預測
Characteristic and structural prediction of insect-specific flaviviruses envelope protein
作者: 洪容萱
Rong-Xuan Hong
關鍵字: 黃病毒;昆蟲特異性黃病毒;套膜蛋白;Flaviviruses;Insect-Specific Flaviviruses;Envelope Protein
引用: 1. Simmonds, P., et al., ICTV virus taxonomy profile: Flaviviridae. Journal of General Virology, 2017. 98(1): p. 2-3. 2. Petersen, L.R. and A.A. Marfin, Shifting epidemiology of Flaviviridae. Journal of travel medicine, 2005. 12(s1). 3. Sips, G.J., J. Wilschut, and J.M. Smit, Neuroinvasive flavivirus infections. Reviews in medical virology, 2012. 22(2): p. 69-87. 4. Daep, C.A., J.L. Muñoz-Jordán, and E.A. Eugenin, Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus. Journal of neurovirology, 2014. 20(6): p. 539-560. 5. Blitvich, B.J. and A.E. Firth, Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses, 2015. 7(4): p. 1927-59. 6. Bolling, B.G., et al., Insect-specific virus discovery: significance for the arbovirus community. Viruses, 2015. 7(9): p. 4911-4928. 7. Blitvich, B.J. and A.E. Firth, A review of flaviviruses that have no known arthropod vector. Viruses, 2017. 9(6): p. 154. 8. LaSala, P.R. and M. Holbrook, Tick-borne flaviviruses. Clinics in laboratory medicine, 2010. 30(1): p. 221-235. 9. Yu, L., et al., Specific requirements for elements of the 5′ and 3′ terminal regions in flavivirus RNA synthesis and viral replication. Virology, 2008. 374(1): p. 170-185. 10. King, A.M., et al., Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. 2011: Elsevier. 11. Lindenbach, B.D. and C.M. Rice, Molecular biology of flaviviruses. Advances in virus research, 2003. 59: p. 23-62. 12. Zhang, X., et al., Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections. Viruses, 2017. 9(11): p. 338. 13. Mukhopadhyay, S., R.J. Kuhn, and M.G. Rossmann, A structural perspective of the flavivirus life cycle. Nature Reviews Microbiology, 2005. 3(1): p. 13. 14. Alkan, C., et al., Ecuador Paraiso Escondido virus, a new flavivirus isolated from New World sand flies in Ecuador, is the first representative of a novel clade in the genus Flavivirus. Journal of virology, 2015. 89(23): p. 11773-11785. 15. Stollar, V. and V.L. Thomas, An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology, 1975. 64(2): p. 367-377. 16. Bolling, B.G., et al., Insect-specific flaviviruses from Culex mosquitoes in Colorado, with evidence of vertical transmission. The American journal of tropical medicine and hygiene, 2011. 85(1): p. 169-177. 17. Chen, Y.-Y., et al., First detection of the Africa/Caribbean/Latin American subtype of Culex flavivirus in Asian country, Taiwan. Comparative immunology, microbiology and infectious diseases, 2013. 36(4): p. 387-396. 18. Saiyasombat, R., et al., Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). Journal of medical entomology, 2011. 48(5): p. 1031-1038. 19. Folimonova, S.Y., Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. Journal of virology, 2012. 86(10): p. 5554-5561. 20. Salas-Benito, J.S. and D. Nova-Ocampo, Viral interference and persistence in mosquito-borne flaviviruses. Journal of immunology research, 2015. 2015. 21. Altman, R.M., The behavior of Murray Valley encephalitis virus in Culex tritaeniorhynchus Giles and Culex pipiens quinquefasciatus Say. The American journal of tropical medicine and hygiene, 1963. 12(3): p. 425-434. 22. Sabin, A.B., Research on Dengue during World War II1. The American journal of tropical medicine and hygiene, 1952. 1(1): p. 30-50. 23. Adelman, Z., et al., Sindbis virus‐induced silencing of dengue viruses in mosquitoes. Insect molecular biology, 2001. 10(3): p. 265-273. 24. Kent, R.J., M.B. Crabtree, and B.R. Miller, Transmission of West Nile virus by Culex quinquefasciatus say infected with Culex Flavivirus Izabal. PLoS neglected tropical diseases, 2010. 4(5): p. e671. 25. Goenaga, S., et al., Potential for co-infection of a mosquito-specific flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses, 2015. 7(11): p. 5801-5812. 26. Crill, W.D. and G.-J.J. Chang, Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. Journal of virology, 2004. 78(24): p. 13975-13986. 27. Heinz, F.X. and K. Stiasny, The antigenic structure of Zika virus and its relation to other flaviviruses: implications for infection and immunoprophylaxis. Microbiology and Molecular Biology Reviews, 2017. 81(1): p. e00055-16. 28. Rey, F.A., et al., The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature, 1995. 375(6529): p. 291. 29. Zhang, Y., et al., Conformational changes of the flavivirus E glycoprotein. Structure, 2004. 12(9): p. 1607-1618. 30. Modis, Y., et al., Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. Journal of virology, 2005. 79(2): p. 1223-1231. 31. Modis, Y., et al., A ligand-binding pocket in the dengue virus envelope glycoprotein. Proceedings of the National Academy of Sciences, 2003. 100(12): p. 6986-6991. 32. Kanai, R., et al., Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. Journal of virology, 2006. 80(22): p. 11000-11008. 33. Nybakken, G.E., et al., Crystal structure of the West Nile virus envelope glycoprotein. Journal of virology, 2006. 80(23): p. 11467-11474. 34. Luca, V.C., et al., Crystal structure of the Japanese encephalitis virus envelope protein. J Virol, 2012. 86(4): p. 2337-46. 35. Dai, L., et al., Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell host & microbe, 2016. 19(5): p. 696-704. 36. Vigerust, D.J. and V.L. Shepherd, Virus glycosylation: role in virulence and immune interactions. Trends in microbiology, 2007. 15(5): p. 211-218. 37. Hacker, K., L. White, and A.M. de Silva, N-linked glycans on dengue viruses grown in mammalian and insect cells. Journal of general virology, 2009. 90(9): p. 2097-2106. 38. Heinz, F.X. and S.L. Allison, Flavivirus structure and membrane fusion. Advances in virus research, 2003. 59: p. 63-99. 39. Chambers, T.J., D.W. McCourt, and C.M. Rice, Production of yellow fever virus proteins in infected cells: identification of discrete polyprotein species and analysis of cleavage kinetics using region-specific polyclonal antisera. Virology, 1990. 177(1): p. 159-174. 40. Hanna, S.L., et al., N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. Journal of virology, 2005. 79(21): p. 13262-13274. 41. Zhang, Y., et al., Mutation of putative N-linked glycosylation sites in Japanese encephalitis virus premembrane and envelope proteins enhances humoral immunity in BALB/C mice after DNA vaccination. Virology journal, 2011. 8(1): p. 138. 42. Sirohi, D., et al., The 3.8 Å resolution cryo-EM structure of Zika virus. Science, 2016. 352(6284): p. 467-470. 43. Cambi, A. and C.G. Figdor, Dual function of C-type lectin-like receptors in the immune system. Current opinion in cell biology, 2003. 15(5): p. 539-546. 44. Cambi, A., et al., Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. The Journal of cell biology, 2004. 164(1): p. 145-155. 45. Medina, R.A., et al., Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Science translational medicine, 2013. 5(187): p. 187ra70-187ra70. 46. Doores, K.J., The HIV glycan shield as a target for broadly neutralizing antibodies. The FEBS journal, 2015. 282(24): p. 4679-4691. 47. Mason, C.P. and A.W. Tarr, Human lectins and their roles in viral infections. Molecules, 2015. 20(2): p. 2229-2271. 48. Zhang, F., S. Ren, and Y. Zuo, DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. International reviews of immunology, 2014. 33(1): p. 54-66. 49. Geijtenbeek, T.B., et al., DC-SIGN, a dendritic cell–specific HIV-1-binding protein that enhances trans-infection of T cells. Cell, 2000. 100(5): p. 587-597. 50. Pöhlmann, S., et al., DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proceedings of the National Academy of Sciences, 2001. 98(5): p. 2670-2675. 51. Wen, D., et al., N-glycosylation of Viral E Protein Is the Determinant for Vector Midgut Invasion by Flaviviruses. mBio, 2018. 9(1): p. e00046-18. 52. Roehrig, J.T., et al., Contribution of disulfide bridging to epitope expression of the dengue type 2 virus envelope glycoprotein. Journal of virology, 2004. 78(5): p. 2648-2652. 53. Fritz, R., et al., The unique transmembrane hairpin of flavivirus fusion protein E is essential for membrane fusion. Journal of virology, 2011. 85(9): p. 4377-4385. 54. Blazevic, J., et al., Membrane anchors of the structural flavivirus proteins and their role in virus assembly. Journal of virology, 2016. 90(14): p. 6365-6378. 55. Rey, F.A., et al., The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO reports, 2018. 19(2): p. 206-224. 56. Lindenbach, B., et al., Flaviviridae, p 712–746. Fields virology, 2013. 1. 57. Pandolfi, F., et al., Integrins: Integrating the Biology and Therapy of Cell–cell Interactions. Clinical therapeutics, 2017. 39(12): p. 2420-2436. 58. Chu, J. and M. Ng, Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection. Virology, 2003. 312(2): p. 458-469. 59. Medigeshi, G.R., et al., West Nile virus entry requires cholesterol-rich membrane microdomains and is independent of αvβ3 integrin. Journal of virology, 2008. 82(11): p. 5212-5219. 60. Schmidt, K., et al., Integrins modulate the infection efficiency of West Nile virus into cells. Journal of General Virology, 2013. 94(8): p. 1723-1733. 61. van der Most, R.G., J. Corver, and J.H. Strauss, Mutagenesis of the RGD motif in the yellow fever virus 17D envelope protein. Virology, 1999. 265(1): p. 83-95. 62. Yamada, S., K. Sugahara, and S. Özbek, Evolution of glycosaminoglycans: Comparative biochemical study. Communicative & integrative biology, 2011. 4(2): p. 150-158. 63. Kim, S.Y., B. Li, and R.J. Linhardt, Pathogenesis and inhibition of flaviviruses from a carbohydrate perspective. Pharmaceuticals, 2017. 10(2): p. 44. 64. Kamhi, E., et al., Glycosaminoglycans in infectious disease. Biological Reviews, 2013. 88(4): p. 928-943. 65. Belting, M., Heparan sulfate proteoglycan as a plasma membrane carrier. Trends in biochemical sciences, 2003. 28(3): p. 145-151. 66. Kumar, S., G. Stecher, and K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 2016. 33(7): p. 1870-1874. 67. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 2004. 32(5): p. 1792-1797. 68. Huelsenbeck, J.P. and F. Ronquist, MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 2001. 17(8): p. 754-755. 69. Blom, N., et al., Prediction of post‐translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004. 4(6): p. 1633-1649. 70. Chauhan, J.S., et al., GlycoPP: a webserver for prediction of N-and O-glycosites in prokaryotic protein sequences. PloS one, 2012. 7(7): p. e40155. 71. Cheng, J., et al., SCRATCH: a protein structure and structural feature prediction server. Nucleic acids research, 2005. 33(suppl_2): p. W72-W76. 72. Yang, J., et al., Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins. Bioinformatics, 2015. 31(23): p. 3773-3781. 73. Tsirigos, K.D., et al., The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic acids research, 2015. 43(W1): p. W401-W407. 74. Käll, L., A. Krogh, and E.L. Sonnhammer, An HMM posterior decoder for sequence feature prediction that includes homology information. Bioinformatics, 2005. 21(suppl_1): p. i251-i257. 75. Krogh, A., et al., Predicting transmembrane protein topology with a hidden markov model: application to complete genomes1. Journal of molecular biology, 2001. 305(3): p. 567-580. 76. Sonnhammer, E.L., G. Von Heijne, and A. Krogh. A hidden Markov model for predicting transmembrane helices in protein sequences. in Ismb. 1998. 77. Tusnady, G.E. and I. Simon, The HMMTOP transmembrane topology prediction server. Bioinformatics, 2001. 17(9): p. 849-850. 78. Guex, N., M.C. Peitsch, and T. Schwede, Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective. Electrophoresis, 2009. 30(S1). 79. Benkert, P., M. Biasini, and T. Schwede, Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011. 27(3): p. 343-350. 80. Bienert, S., et al., The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Research, 2017. 45(D1): p. D313-D319. 81. Bertoni, M., et al., Modeling protein quaternary structure of homo-and hetero-oligomers beyond binary interactions by homology. Scientific reports, 2017. 7(1): p. 10480. 82. Waterhouse, A., et al., SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 2018: p. gky427-gky427. 83. Vangone, A., et al., COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics, 2011. 27(20): p. 2915-2916. 84. Goo, L., et al., The Zika virus envelope protein glycan loop regulates virion antigenicity. Virology, 2018. 515: p. 191-202. 85. Alvarez-Manilla, G., et al., Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. Journal of proteome research, 2006. 5(3): p. 701-708. 86. Thaysen-Andersen, M., et al., Structural analysis of glycoprotein sialylation–part I: pre-LC-MS analytical strategies. Rsc Advances, 2013. 3(45): p. 22683-22705. 87. Palmisano, G., et al., Structural analysis of glycoprotein sialylation–part II: LC-MS based detection. Rsc Advances, 2013. 3(45): p. 22706-22726. 88. Ebrahimi, S., H. Mohabatkar, and M. Behbahani, In silico Comparison of Structural Features and Predicted Epitopes of Envelope Protein of Zika Virus with the Homologous Proteins of Two Closely Related Viruses. 89. Aitken, A. and M. Learmonth, Diagonal Electrophoresis for Detecting Disulfide Bridges, in The Protein Protocols Handbook. 2002, Springer. p. 589-593. 90. Yao, H., et al., Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain. Biochemistry, 2016. 55(49): p. 6787-6800. 91. Kolaskar, A. and U. Kulkarni-Kale, Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus. Virology, 1999. 261(1): p. 31-42. 92. Sumer-Bayraktar, Z., et al., N-glycans modulate the function of human corticosteroid-binding globulin. Molecular & Cellular Proteomics, 2011. 10(8): p. M111. 009100. 93. Hart, G.W., Thematic minireview series on glycobiology and extracellular matrices: glycan functions pervade biology at all levels. Journal of Biological Chemistry, 2013. 288(10): p. 6903-6903. 94. Jarvis, D.L., Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology, 2003. 310(1): p. 1-7. 95. Meunier, J., et al., Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex. Journal of General Virology, 1999. 80(4): p. 887-896. 96. Land, A. and I. Braakman, Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. Biochimie, 2001. 83(8): p. 783-790. 97. Slater-Handshy, T., et al., HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing. Virology, 2004. 319(1): p. 36-48. 98. Yap, S.S., et al., Dengue Virus Glycosylation: What Do We Know? Frontiers in microbiology, 2017. 8: p. 1415. 99. Pangerl, K., F.X. Heinz, and K. Stiasny, Mutational analysis of the zippering reaction during flavivirus membrane fusion. Journal of virology, 2011. 85(17): p. 8495-8501. 100. Watterson, D., B. Kobe, and P.R. Young, Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding. Journal of General Virology, 2012. 93(1): p. 72-82. 101. Xu, L.-J., et al., Genomic analysis of a newly isolated of Japanese encephalitis virus strain, CQ11-66, from a pediatric patient in China. Virology journal, 2013. 10(1): p. 101. 102. Hoshino, K., et al., Isolation and characterization of a new insect flavivirus from Aedes albopictus and Aedes flavopictus mosquitoes in Japan. Virology, 2009. 391(1): p. 119-129. 103. Fauver, J.R., et al., West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology, 2016. 498: p. 288-299. 104. Tyler, S., et al., Distribution and phylogenetic comparisons of a novel mosquito flavivirus sequence present in Culex tarsalis mosquitoes from western Canada with viruses isolated in California and Colorado. The American journal of tropical medicine and hygiene, 2011. 85(1): p. 162-168. 105. Cholleti, H., et al., Discovery of novel viruses in mosquitoes from the Zambezi valley of Mozambique. PloS one, 2016. 11(9): p. e0162751. 106. Parreira, R., et al., Genetic characterization of an insect-specific flavivirus isolated from Culex theileri mosquitoes collected in southern Portugal. Virus research, 2012. 167(2): p. 152-161. 107. Misencik, M.J., et al., Isolation of a novel insect-specific Flavivirus from Culiseta melanura in the Northeastern United States. Vector-Borne and Zoonotic Diseases, 2016. 16(3): p. 181-190. 108. Huhtamo, E., et al., Novel insect-specific flavivirus isolated from northern Europe. Virology, 2012. 433(2): p. 471-478. 109. Colmant, A.M., et al., A New Clade of Insect-Specific Flaviviruses from Australian Anopheles Mosquitoes Displays Species-Specific Host Restriction. mSphere, 2017. 2(4): p. e00262-17. 110. Guzman, H., et al., Characterization of three new insect-specific flaviviruses: their relationship to the mosquito-borne flavivirus pathogens. The American journal of tropical medicine and hygiene, 2018. 98(2): p. 410-419. 111. Carrera, J.-P., et al., Mercadeo virus: a novel mosquito-specific flavivirus from Panama. The American journal of tropical medicine and hygiene, 2015. 93(5): p. 1014-1019. 112. Zhang, X., et al., Complete genome sequence of Menghai flavivirus, a novel insect-specific flavivirus from China. Archives of virology, 2017. 162(5): p. 1435-1439. 113. Cook, S., et al., Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. Journal of General Virology, 2009. 90(11): p. 2669-2678. 114. Junglen, S., et al., Host range restriction of insect-specific flaviviruses occurs at several levels of the viral life cycle. Msphere, 2017. 2(1): p. e00375-16. 115. Ferreira, D.D., et al., Characterization of an insect-specific flavivirus (OCFV PT) co-isolated from Ochlerotatus caspius collected in southern Portugal along with a putative new Negev-like virus. Virus Genes, 2013. 47(3): p. 532-545. 116. McLean, B.J., et al., A novel insect-specific flavivirus replicates only in Aedes-derived cells and persists at high prevalence in wild Aedes vigilax populations in Sydney, Australia. Virology, 2015. 486: p. 272-83. 117. Crabtree, M.B., P.T. Nga, and B.R. Miller, Isolation and characterization of a new mosquito flavivirus, Quang Binh virus, from Vietnam. Archives of virology, 2009. 154(5): p. 857-860. 118. Kuwata, R., et al., Isolation of Japanese encephalitis virus and a novel insect-specific flavivirus from mosquitoes collected in a cowshed in Japan. Archives of virology, 2015. 160(9): p. 2151-2159. 119. Zuo, S., et al., Detection of Quang Binh virus from mosquitoes in China. Virus research, 2014. 180: p. 31-38. 120. Fan, H., et al., Complete genome sequence of Xishuangbanna flavivirus, a novel mosquito-specific flavivirus from China. Archives of virology, 2016. 161(6): p. 1723-1727. 121. Kolodziejek, J., et al., Barkedji virus, a novel mosquito-borne flavivirus identified in Culex perexiguus mosquitoes, Israel, 2011. Journal of General Virology, 2013. 94(11): p. 2449-2457. 122. Zuo-shu, W., A. Shu-yi, and W. Yan, A new virus of Flavivirus: Chaoyang virus isolated in Liaoning province. Chinese Journal of Public Health, 2009. 7: p. 002. 123. Huhtamo, E., et al., Novel flaviviruses from mosquitoes: Mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses. Virology, 2014. 464: p. 320-329. 124. Huhtamo, E., et al., Characterization of a novel flavivirus from mosquitoes in northern europe that is related to mosquito-borne flaviviruses of the tropics. Journal of virology, 2009. 83(18): p. 9532-9540. 125. Vázquez, A., et al., Novel flaviviruses detected in different species of mosquitoes in Spain. Vector-Borne and Zoonotic Diseases, 2012. 12(3): p. 223-229. 126. Evangelista, J., et al., Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru. Journal of General Virology, 2013. 94(6): p. 1266-1272. 127. Pauvolid-Corrêa, A., et al., Nhumirim virus, a novel flavivirus isolated from mosquitoes from the Pantanal, Brazil. Archives of virology, 2015. 160(1): p. 21-27. 128. Junglen, S., et al., A new flavivirus and a new vector: characterization of a novel flavivirus isolated from uranotaenia mosquitoes from a tropical rain forest. Journal of virology, 2009. 83(9): p. 4462-4468. 129. Billoir, F., et al., Phylogeny of the genus flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. Journal of General Virology, 2000. 81(3): p. 781-790. 130. Kuno, G. and G.-J.J. Chang, Characterization of Sepik and Entebbe bat viruses closely related to yellow fever virus. The American journal of tropical medicine and hygiene, 2006. 75(6): p. 1165-1170. 131. Fairbrother, A. and T. Yuill, Experimental infection and horizontal transmission of Modoc virus in deer mice (Peromyscus maniculatus). Journal of wildlife diseases, 1987. 23(2): p. 179-185. 132. Tajima, S., et al., Genetic characterization of Yokose virus, a flavivirus isolated from the bat in Japan. Virology, 2005. 332(1): p. 38-44. 133. George, T.S., et al., The isolation of Saumarez Reef virus, a new flavivirus, from bird ticks Ornithodoros capensis and Ixodes eudyptidis in Australia. Immunology and Cell Biology, 1977. 55(5): p. 493. 134. L'vov, D., et al., Genetic characterization of viruses from the antigenic complex Tyuleniy (Flaviviridae, Flavivirus): Tyuleniy virus (TYUV)(ID GenBank KF815939) isolated from ectoparasites of colonial seabirds--Ixodes (Ceratixodes) uriae White, 1852, ticks collected in the high latitudes of Northern Eurasia--and Kama virus (KAMV) isolated from the Ixodes lividus Roch, 1844, collected in the digging colonies of the middle part of Russian plane. Voprosy virusologii, 2014. 59(1): p. 18-24. 135. Chastel, C., et al., The isolation of Meaban virus, a newFlavivirus from the seabird tickOrnithodoros (Alectorobius) maritimus in France. Archives of virology, 1985. 83(3-4): p. 129-140. 136. Henderson, B., et al., Virus isolations from Ixodid ticks in Uganda. Part II. Kadam virus-a new member of arbovirus group B isolated from Rhipicephalus pravus Donitz. East African medical journal, 1970. 47(5): p. 273-276. 137. Grard, G., et al., Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology, 2007. 361(1): p. 80-92. 138. Williams, R., et al., Royal farm virus: a new tickborne group B agent related to the RSSE complex. The American journal of tropical medicine and hygiene, 1972. 21(5): p. 582-586. 139. Lvov, D., et al., 'Karshi' virus, a new flavivirus (Togaviridae) isolated fromOrnithodoros papillipes (Birula, 1895) ticks in Uzbek SSR. Archives of virology, 1976. 50(1-2): p. 29-36. 140. Fatmi, S.S., R. Zehra, and D.O. Carpenter, Powassan Virus-A New Re-emerging Tick-borne Disease. Frontiers in public health, 2017. 5: p. 342. 141. Charrel, R.N., et al., Alkhurma hemorrhagic fever virus in Ornithodoros savignyi ticks. Emerging Infectious Diseases, 2007. 13(1): p. 153. 142. Campbell, M.S. and A.G. Pletnev, Infectious cDNA clones of Langat tick-borne flavivirus that differ from their parent in peripheral neurovirulence. Virology, 2000. 269(1): p. 225-237. 143. Karan, L.S., et al., The deduced evolution history of Omsk hemorrhagic fever virus. Journal of medical virology, 2014. 86(7): p. 1181-1187. 144. Papa, A., V. Pavlidou, and A. Antoniadis, Greek goat encephalitis virus strain isolated from Ixodes ricinus, Greece. Emerging infectious diseases, 2008. 14(2): p. 330. 145. Jeffries, C., et al., Louping ill virus: an endemic tick-borne disease of Great Britain. Journal of General Virology, 2014. 95(5): p. 1005-1014. 146. Mandl, C.W., et al., Genome sequence of tick-borne encephalitis virus (Western subtype) and comparative analysis of nonstructural proteins with other flaviviruses. Virology, 1989. 173(1): p. 291-301. 147. Rice, C.M., et al., Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science, 1985. 229(4715): p. 726-733. 148. Grard, G., et al., Genomics and evolution of Aedes-borne flaviviruses. Journal of General Virology, 2010. 91(1): p. 87-94. 149. Whitehead, S.S., et al., A live, attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3′ untranslated region is highly attenuated and immunogenic in monkeys. Journal of virology, 2003. 77(2): p. 1653-1657. 150. Kinney, R.M., et al., Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology, 1997. 230(2): p. 300-308. 151. Peyrefitte, C.N., et al., Genetic characterization of newly reintroduced dengue virus type 3 in Martinique (French West Indies). Journal of clinical microbiology, 2003. 41(11): p. 5195-5198. 152. Puri, B., et al., Molecular analysis of dengue virus attenuation after serial passage in primary dog kidney cells. Journal of general virology, 1997. 78(9): p. 2287-2291. 153. May, F.J., et al., Genetic divergence among members of the Kokobera group of flaviviruses supports their separation into distinct species. Journal of General Virology, 2013. 94(7): p. 1462-1467. 154. Warrilow, D., et al., Complete coding sequences of three members of the kokobera group of flaviviruses. Genome announcements, 2014. 2(5): p. e00890-14. 155. Kuno, G. and G.-J.J. Chang, Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clinical microbiology reviews, 2005. 18(4): p. 608-637. 156. Han, K., et al., Complete genome sequence of goose tembusu virus, isolated from jiangnan white geese in Jiangsu, China. Genome announcements, 2013. 1(2): p. e00236-12. 157. Dilcher, M., et al., Full-length genome sequence of Ntaya virus. Virus genes, 2013. 46(1): p. 162-164. 158. Ciota, A.T., et al., Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology, 2007. 357(2): p. 165-174. 159. Moureau, G., et al., New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One, 2015. 10(2): p. e0117849. 160. May, F.J., et al., Biological, antigenic and phylogenetic characterization of the flavivirus Alfuy. Journal of general virology, 2006. 87(2): p. 329-337. 161. Hurrelbrink, R.J., A. Nestorowicz, and P.C. McMinn, Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA. Journal of general virology, 1999. 80(12): p. 3115-3125. 162. Campbell, G.L., et al., West nile virus. The Lancet infectious diseases, 2002. 2(9): p. 519-529. 163. Kuno, G. and G.-J. Chang, Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Archives of virology, 2007. 152(4): p. 687-696.
黃病毒屬 (Flavivirus) 家族的大多數成員,包括登革病毒 (Dengue virus, DENV) 西尼羅病毒 (West Nile virus, WNV) 及茲卡病毒 (Zika virus, ZIKV),皆為可以感染脊椎動物和節肢動物之雙宿主病毒,並在全世界大流行造成公共衛生之重要威脅,亦稱其為醫學重要之黃病毒 (medically important flaviviruses, MIF)。然而過去十年間,許多僅能感染昆蟲並於昆蟲體內複製之新興黃病毒陸續被分離出,並將其定義為昆蟲特異性黃病毒 (insect-specific flaviviruses, ISF)。在過去文獻中指出某些ISFs抑制MIFs於蚊蟲細胞中複製的情形。黃病毒的套膜蛋白 (envelope, E) 是宿主範圍或組織趨性的重要決定蛋白。但是ISFs E蛋白的特徵目前仍不清楚。在本篇論文中總共收集37個ISF E蛋白序列,並用線上公開之軟體進行分析和預測。跟據黃病毒E蛋白胺基酸序列之親緣關係樹顯示,除Paraiso Escondido virus外可將ISFs分為兩組,分別為典型昆蟲特異性黃病毒 (Classical insect-specific flaviviruses, cISFs),以及雙宿主關聯之昆蟲特異性黃病毒 (Dual-host-affiliated ISFs, dISFs)。收集之cISFs的E蛋白胺基酸序列的長度為426至432個胺基酸,相較於dISFs 的491至504個胺基酸和MIFs的489至501個胺基酸較短。MIFs E蛋白具有1至2個天門冬醯胺 (Asparagine, N) 被醣基化;而dISFs和cISFs潛在N端醣基化 (N-linked glycosylation)位置分別為0〜2和1〜6個氨基酸。MIFs E蛋白中有6個保守的雙硫鍵 (disulfide bonds, SS);而dISFs和cISFs E蛋白預測的結果顯示其分別具有5對和6〜7對SS。dISFs跨膜區域預測結果與MIFs相似包含2個跨膜蛋白;然而cISFs只包含1個跨膜蛋白。最後以日本腦炎病毒E蛋白作為最佳模板,使用SWISS-MODEL中同源建構模式預測ISFs E蛋白的二聚體結構。已知MIFs E蛋白結構經折疊形成三個不同的結構域 (domain),並具有較高遮蓋面積 (buried surface area, BSA) 為緊密之二聚體。dISFs E蛋白結構預測之結果與MIFs相似,具有相似結構域折疊、較低的BSA值、融合環 (fusion loop) 被覆蓋程度高以及具有RGD/RGE之整合素 (integrin) 序列辨識;但cISFs表現出不同的特徵。總和所有特性,dISFs與MIFs不僅在演化樹分類上相近,並且所預測出之E蛋白結構也顯示出相似的特徵。

Most members of the Flavivirus genus in the family of Flaviviridae, including dengue virus (DENV), West Nile virus (WNV) and Zika virus (ZIKV), infect vertebrate and arthropod hosts. These two hosts flaviviruses caused a pandemic around the world become public heathy concern so it also called medically important flaviviruses (MIFs). But in last decade, there has been a dramatic increase in the number of insect-specific flaviviruses (ISFs) discovered. ISFs can infect insects and insect cells, but they do not replicate and infect vertebrates or vertebrate cells. Some ISFs have been shown to suppress or inhibit the replication of MIFs in mosquito cells. The envelope glycoprotein (E protein) of flavivirus is an important determinant for host range or tissue tropism. But, the characteristics of ISFs E protein are still unclear. Here, comprehensive and total 37 ISF E protein sequences were collected, and analyzed and predicated with public-domain software. The phylogenic tree based on E protein amino acid sequence showed ISFs classified into two groups, classical ISFs (cISFs) and dual-host affiliated ISFs (dISFs), except Paraiso Escondido virus. The length of the E protein amino acid sequence of cISFs (426to 432 amino acids) was shorter than dISFs (491 to 504 amino acids) and MIFs (489 to 501 amino acids). The MIFs E protein is glycosylated at 1 to 2 amino acids, the potentially N-linked glycosylation sites of dISFs and cISFs were 0~2 and 1~6 amino acids, respectively. There were six conserved disulfide (SS) bonds in the MIFs E protein, the predicated SS bonds in the dISFs and cISFs E protein were 5 and 6~7 bonds, respectively. The predicated transmembrane region topology of dISFs was similar to MIFs, which contain 2 transmembrane domains, but the cISFs just contain 1 transmembrane domain. The dimer structure of ISFs E protein was predicated using SWISS-MODEL based on the resolved and best template of Japanese encephalitis virus E protein. The MIFs E protein folds into three distinct domains (domain I, II, and III), and forms tight contact dimer (higher buried surface area, BSA). The predicated structure of dISFs E protein was similar to MIFs, but the cISFs showed different characteristics, including domain folding, lower BSA, receptor binding motif and fusion loop. Overall, the dISFs were genetically close-related to MIFs, and the predicated E protein structure also shown similar features.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-27起公開。
Appears in Collections:微生物暨公共衛生學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105046207-1.pdf6.42 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.