Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/98201
標題: | 豬流行性下痢病毒之親緣動態演化分析 Comprehensive evolutionary and phylodynamic analysis of porcine epidemic diarrhea virus |
作者: | 宋明華 Ming-Hua Sung |
關鍵字: | 豬流行性下痢病毒;親緣動態;Porcine epidemic diarrhea virus;Phylodynamics | 引用: | Abascal, F., Zardoya, R., & Posada, D. (2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics, 21(9), 2104-2105. Alonso, C., Goede, D. P., Morrison, R. B., Davies, P. R., Rovira, A., Marthaler, D. G., & Torremorell, M. (2014). Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Veterinary Research, 45(1), 73. Álvarez, E., DeDiego, M. L., Nieto-Torres, J. L., Jiménez-Guardeño, J. M., Marcos-Villar, L., &Enjuanes, L. (2010). The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology, 402(2), 281-291. Alvarez, J., Sarradell, J., Morrison, R., & Perez, A. (2015). Impact of porcine epidemic diarrhea on performance of growing pigs. PloS One, 10(3), e0120532. Arruda, A. G., Vilalta, C., Perez, A., & Morrison, R. (2017). Land altitude, slope, and coverage as risk factors for Porcine Reproductive and Respiratory Syndrome (PRRS) outbreaks in the United States. PloS One, 12(4), e0172638. Avise, J. C. (2000). Phylogeography: the history and formation of species. Harvard university press. Báez-Santos, Y. M., John, S. E. S., &Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21-38. Beam, A., Goede, D., Fox, A., McCool, M. J., Wall, G., Haley, C., & Morrison, R. (2015). A porcine epidemic diarrhea virus outbreak in one geographic region of the united states: descriptive epidemiology and investigation of the possibility of airborne virus spread. PloS One, 10(12), e0144818. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2006). GenBank. Nucleic Acids Research, 34(Database issue), D16. Bhardwaj, K., Sun, J., Holzenburg, A., Guarino, L. A., & Kao, C. C. (2006). RNA recognition and cleavage by the SARS coronavirus endoribonuclease. Journal of Molecular Biology, 361(2), 243-256. Bielejec, F., Rambaut, A., Suchard, M. A., & Lemey, P. (2011). SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics, 27(20), 2910-2912. Boniotti, M. B., Papetti, A., Lavazza, A., Alborali, G., Sozzi, E., Chiapponi, C., ... &Marthaler, D. (2016). Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy. Emerging Infectious Diseases, 22(1), 83. Bosch, B. J., van der Zee, R., de Haan, C. A., & Rottier, P. J. (2003). The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of Virology, 77(16), 8801-8811. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., ...& Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4), e1003537. Brian, D. A., & Baric, R. S. (2005). Coronavirus genome structure and replication. In Coronavirus replication and reverse genetics (pp. 1-30). Springer, Berlin, Heidelberg. Bridgen, A., Duarte, M., Tobler, K., Laude, H., & Ackermann, M. (1993). Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus. Journal of General Virology, 74(9), 1795-1804. Chang, S. H., Bae, J. L., Kang, T. J., Kim, J., Chung, G. H., Lim, C. W., ... & Jang, Y. S. (2002). Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Molecules and Cells, 14(2), 295-299. Chasey, D., & Cartwright, S. F. (1978). Virus-like particles associated with porcine epidemic diarrhoea. Research in Veterinary Science, 25(2), 255-256. Chattha, K. S., Roth, J. A., & Saif, L. J. (2015). Strategies for design and application of enteric viral vaccines. Annual Review of Animal Biosciences., 3(1), 375-395. Chen, J., Liu, X., Lang, H., Wang, Z., Shi, D., Shi, H., ...& Feng, L. (2013a). Genetic variation of nucleocapsid genes of porcine epidemic diarrhea virus field strains in China. Archives of Virology, 158(6), 1397-1401. Chen, J., Liu, X., Shi, D., Shi, H., Zhang, X., Li, C., ...& Feng, L. (2013b). Detection and molecular diversity of spike gene of porcine epidemic diarrhea virus in China. Viruses, 5(10), 2601-2613. Chen, Q., Gauger, P. C., Stafne, M. R., Thomas, J. T., Madson, D. M., Huang, H., ... & Zhang, J. (2016). Pathogenesis comparison between the United States porcine epidemic diarrhoea virus prototype and S-INDEL-variant strains in conventional neonatal piglets. Journal of General Virology, 97(5), 1107-1121. Chen, Q., Li, G., Stasko, J., Thomas, J. T., Stensland, W. R., Pillatzki, A. E., ... & Stevenson, G. W. (2014). Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. Journal of Clinical Microbiology, 52(1), 234-243. Cheng Q. 1992. Investigation on epidemic diarrhea in pigs in Qinghai region. Qinghai Xumu Shaoyi Zazhi 22:22-23. Chiou, H. Y., Huang, Y. L., Deng, M. C., Chang, C. Y., Jeng, C. R., Tsai, P. S., ... & Chang, H. W. (2017). Phylogenetic analysis of the spike (S) gene of the new variants of porcine epidemic diarrhoea virus in Taiwan. Transboundary and Emerging Diseases, 64(1), 157-166. Chiou, M. T., Yu, C. H., Chang, C. C., Chung, W. B., Wu, H. Y., Lin, C. F., & Lin, C. N. (2014). Molecular characterization of the porcine epidemic diarrhea virus TW4/2014 in Taiwan. Austin Virology and Retro Virology, 1, 2-5. Choi, J. C., Lee, K. K., Pi, J. H., Park, S. Y., Song, C. S., Choi, I. S., ... & Lee, S. W. (2014). Comparative genome analysis and molecular epidemiology of the reemerging porcine epidemic diarrhea virus strains isolated in Korea. Infection, Genetics and Evolution, 26, 348-351. Chouljenko, V. N., Lin, X. Q., Storz, J., Kousoulas, K. G., &Gorbalenya, A. E. (2001). Comparison of genomic and predicted amino acid sequences of respiratory and enteric bovine coronaviruses isolated from the same animal with fatal shipping pneumonia. Journal of General Virology, 82(12), 2927-2933. Chung, H. C., Moon, H. J., Kang, B. K., Kim, S. J., Kim, H. K., Park, S. J., & Park, B. K. (2017). Genetic characterization of s1 domain of porcine epidemic diarrhea viruses spike proteins isolated in Korea. Journal of Immune Disorders & Therapy, 1(1). Chung, H. C., Van Giap Nguyen, H. J. M., Lee, J. H., Park, S. J., Lee, G. E., Kim, H. K., ... & Park, B. K. (2015). ISolation of porcine epidemic diarrhea virus during outbreaks in South Korea, 2013–2014. Emerging Infectious Diseases, 21(12), 2238. Cima, G. (2013) Viral disease affects US pigs: porcine epidemic diarrhea found in at least 11 states. Journal of the American Veterinary Medical Association. 243, 30–31. Cima, G. (2013). Fighting a deadly pig disease. Industry, veterinarians trying to contain PED virus, new to the US. Journal of the American Veterinary Medical Association, 243(4), 469-70 Cima, G. (2014). PED virus reinfecting US herds. Virus estimated to have killed 7 million-plus pigs. Journal of the American Veterinary Medical Association, 245(2), 166. Clementz, M. A., Chen, Z., Banach, B. S., Wang, Y., Sun, L., Ratia, K., ... & Li, K. (2010). Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. Journal of Virology, 84(9), 4619-4629. Cruz, D. J. M., Kim, C. J., & Shin, H. J. (2006). Phage-displayed peptides having antigenic similarities with porcine epidemic diarrhea virus (PEDV) neutralizing epitopes. Virology, 354(1), 28-34. Dastjerdi, A., Carr, J., Ellis, R. J., Steinbach, F., & Williamson, S. (2015). Porcine epidemic diarrhea virus among farmed pigs, Ukraine. Emerging infectious diseases, 21(12), 2235. de Arriba, M. L., Carvajal, A., Pozo, J., & Rubio, P. (2002). Isotype-specific antibody-secreting cells in systemic and mucosal associated lymphoid tissues and antibody responses in serum of conventional pigs inoculated with PEDV. Veterinary Immunology and Immunopathology, 84(1-2), 1-16. de Arriba, M. L., Carvajal, A., Pozo, J., & Rubio, P. (2002). Lymphoproliferative responses and protection in conventional piglets inoculated orally with virulent or attenuated porcine epidemic diarrhoea virus. Journal of Virological Methods, 105(1), 37-47. de Haan, C. A., Kuo, L., Masters, P. S., Vennema, H., &Rottier, P. J. (1998). Coronavirus particle assembly: primary structure requirements of the membrane protein. Journal of Virology, 72(8), 6838-6850. de Haan, C. A., Vennema, H., & Rottier, P. J. (2000). Assembly of the coronavirus envelope: homotypic interactions between the M proteins. Journal of Virology, 74(11), 4967-4978. Debouck, P., & Pensaert, M. (1980). Experimental infection of pigs with a new porcine enteric coronavirus, CV 777. American journal of Veterinary Research, 41(2), 219-223. DeDiego, M. L., Álvarez, E., Almazán, F., Rejas, M. T., Lamirande, E., Roberts, A., ...&Enjuanes, L. (2007). A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. Journal of Virology, 81(4), 1701-1713. DeDiego, M. L., Pewe, L., Alvarez, E., Rejas, M. T., Perlman, S., &Enjuanes, L. (2008). Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology, 376(2), 379-389. Dee, S., Clement, T., Schelkopf, A., Nerem, J., Knudsen, D., Christopher-Hennings, J., & Nelson, E. (2014a). An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naive pigs following consumption via natural feeding behavior: proof of concept. BMC Veterinary Research, 10(1), 176. Dee, S., Neill, C., Clement, T., Christopher-Hennings, J., & Nelson, E. (2014b). An evaluation of a liquid antimicrobial (Sal CURB®) for reducing the risk of porcine epidemic diarrhea virus infection of naïve pigs during consumption of contaminated feed. BMC Veterinary Research, 10(1), 220. Delport, W., Poon, A. F., Frost, S. D., & Kosakovsky Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26(19), 2455-2457. Deng, M. C., Chang, C. Y., Huang, T. S., Kuo, S. T., Tsai, H. J., Chang, C., & Huang, Y. L. (2014). The outbreak of porcine epidemic diarrhea in Taiwan. Taiwan Veterinary Journal, 40(03), 115-121. Diep, N., Norimine, J., Sueyoshi, M., Lan, N. T., Hirai, T., & Yamaguchi, R. (2015). US-like isolates of porcine epidemic diarrhea virus from Japanese outbreaks between 2013 and 2014. Springerplus, 4(1), 756. Ding, Z., Fang, L., Jing, H., Zeng, S., Wang, D., Liu, L., ... & Xiao, S. (2014). Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. Journal of Virology, 88(16), 8936-8945. Diosdado, F., Martinez , A., Socci, G., Carrera, E., Cordova, D., Garcia, A. (2014). Molecular identification of the PEDV. In Proceeding of the 23rd International Pig Veterinary Society Congress; Cancun, Mexico.: 306. Drummond, A. J., Ho, S. Y., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), e88. Drummond, A. J., Nicholls, G. K., Rodrigo, A. G., & Solomon, W. (2002). Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics, 161(3), 1307-1320. Drummond, A. J., Rambaut, A., Shapiro, B. E. T. H., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22(5), 1185-1192. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969-1973. Duy, D. T., Toan, N.T., Puranaveja, S., Thanawongnuwech, R. (2011). Genetic characterization of porcine epidemic diarrhea virus (PEDV) isolates from southern Vietnam during 2009-2010 outbreaks. Thai Journal of Veterinary Medicine, 41(1), 55-64. Eckerle, L. D., Becker, M. M., Halpin, R. A., Li, K., Venter, E., Lu, X., ... & Spiro, D. J. (2010). Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathogens, 6(5), e1000896. Eckerle, L. D., Lu, X., Sperry, S. M., Choi, L., & Denison, M. R. (2007). High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. Journal of Virology, 81(22), 12135-12144. EFSA AHAW Panel. (2014). Scientific Opinion on porcine epidemic diarrhoea and emerging pig deltacoronavirus. EFSA J, 12, 3877. Egloff, M. P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre, H., ... &Canard, B. (2004). The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3792-3796. Fischer, F., Stegen, C. F., Masters, P. S., &Samsonoff, W. A. (1998). Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. Journal of Virology, 72(10), 7885-7894. Frost, S. D., & Volz, E. M. (2010). Viral phylodynamics and the search for an 'effective number of infections'. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1879-1890. Gao, Q., Zhao, S., Qin, T., Yin, Y., & Yang, Q. (2015). Effects of porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells. Veterinary Microbiology, 179(3-4), 131-141. Ge, F. F., Yang, D. Q., Ju, H. B., Wang, J., Liu, J., Liu, P. H., & Zhou, J. P. (2013). Epidemiological survey of porcine epidemic diarrhea virus in swine farms in Shanghai, China. Archives of Virology, 158(11), 2227-2231. Geiger, J. O., & Connor, J. F. (2013). Porcine epidemic diarrhea, diagnosis, and elimination. In American Association of Swine Practitioners (Vol. 2013, pp. 1-4). Godet, M., Grosclaude, J., Delmas, B., & Laude, H. (1994). Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. Journal of Virology, 68(12), 8008-8016. Graham, R. L., & Baric, R. S. (2010). Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. Journal of Virology, 84(7), 3134-3146. Grasland, B., Bigault, L., Bernard, C., Quenault, H., Toulouse, O., Fablet, C., ... & Blanchard, Y. (2015). Complete genome sequence of a porcine epidemic diarrhea s gene indel strain isolated in france in december 2014. Genome Announcements, 3(3), e00535-15. Gray, R. R., Veras, N. M. C., Santos, L. A., &Salemi, M. (2010). Evolutionary characterization of the West Nile Virus complete genome. Molecular Phylogenetics and Evolution, 56(1), 195-200. Hagemeijer, M. C., Monastyrska, I., Griffith, J., van der Sluijs, P., Voortman, J., enHenegouwen, P. M. V. B., ... & de Haan, C. A. (2014). Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4. Virology, 458, 125-135. Hall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000. Hanke, D., Jenckel, M., Petrov, A., Ritzmann, M., Stadler, J., Akimkin, V., ... & Höper, D. (2015). Comparison of porcine epidemic diarrhea viruses from Germany and the United States, 2014. Emerging Infectious Diseases, 21(3), 493. Harpending, H. C. (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 591-600. Have, P., Moving, V., Svansson, V., Uttenthal, Å., & Bloch, B. (1992). Coronavirus infection in mink (Mustela vision). Serological evidence of infection with a coronavirus related to transmissible gastroenteritis virus and porcine epidemic diarrhea virus. Veterinary Microbiology, 31(1), 1-10. Herrewegh, A. A., Smeenk, I., Horzinek, M. C., Rottier, P. J., & de Groot, R. J. (1998). Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. Journal of Virology, 72(5), 4508-4514. Hofmann, M. A. R. T. I. N., & Wyler, R. O. B. E. R. T. (1988). Propagation of the virus of porcine epidemic diarrhea in cell culture. Journal of Clinical Microbiology, 26(11), 2235-2239. Hofmann, M., & Wyler, R. (1989). Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV). Veterinary Microbiology, 20(2), 131-142. Holmes, E. C., Nee, S., Rambaut, A., Garnett, G. P., & Harvey, P. H. (1995). Revealing the history of infectious disease epidemics through phylogenetic trees. Philosophical Transactions of the Royal Society of London. Series B, 349(1327), 33-40. Horie, M., Kabemura, M., Masatani, T., Matsuu, A., & Ozawa, M. (2016). Isolation and molecular characterization of porcine epidemic diarrhea viruses collected in Japan in 2014. Archives of Virology, 161(8), 2189-2195. Huang, Y. W., Dickerman, A. W., Piñeyro, P., Li, L., Fang, L., Kiehne, R., ... & Meng, X. J. (2013). Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio, 4(5), e00737-13. Hurst, K. R., Ye, R., Goebel, S. J., Jayaraman, P., & Masters, P. S. (2010). An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA. Journal of Virology, 84(19), 10276-10288. Ivanov, K. A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A. E., & Ziebuhr, J. (2004). Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12694-12699. Jackwood, M. W., Hilt, D. A., Callison, S. A., Lee, C. W., Plaza, H., & Wade, E. (2001). Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Diseases, 366-372. Jang, J., Yoon, S. H., Lee, W., Yu, J., Yoon, J., Shim, S., & Kim, H. (2018). Time-calibrated phylogenomics of the porcine epidemic diarrhea virus: genome-wide insights into the spatio-temporal dynamics. Genes & Genomics, 1-10. Jarvis, M. C., Lam, H. C., Zhang, Y., Wang, L., Hesse, R. A., Hause, B. M., ... & Murtaugh, M. P. (2016). Genomic and evolutionary inferences between American and global strains of porcine epidemic diarrhea virus. Preventive Veterinary Medicine, 123, 175-184. Jones, D. T., Taylor, W. R., & Thornton, J. M. (1992). The rapid generation of mutation data matrices from protein sequences. Bioinformatics, 8(3), 275-282. Joseph, J. S., Saikatendu, K. S., Subramanian, V., Neuman, B. W., Brooun, A., Griffith, M., ... & Stevens, R. C. (2006). Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. Journal of Virology, 80(16), 7894-7901. Jung, K., Annamalai, T., Lu, Z., & Saif, L. J. (2015a). Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs. Veterinary Microbiology, 178(1-2), 31-40. Jung, K., & Saif, L. J. (2015b). Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis. The Veterinary Journal, 204(2), 134-143. Jung, K., Kim, J., Ha, Y., Choi, C., & Chae, C. (2006). The effects of transplacental porcine circovirus type 2 infection on porcine epidemic diarrhoea virus-induced enteritis in preweaning piglets. The Veterinary Journal, 171(3), 445-450. Jung, K., Wang, Q., Scheuer, K. A., Lu, Z., Zhang, Y., & Saif, L. J. (2014). Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. Emerging Infectious Diseases, 20(4), 662. Kamitani, W., Huang, C., Narayanan, K., Lokugamage, K. G., & Makino, S. (2009). A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nature Structural and Molecular Biology, 16(11), 1134. Khatri, M. (2015). Porcine epidemic diarrhea virus replication in duck intestinal cell line. Emerging Infectious Diseases, 21(3), 549. Khattari, Z., Brotons, G., Akkawi, M., Arbely, E., Arkin, I. T., &Salditt, T. (2006). SARS coronavirus E protein in phospholipid bilayers: an x-ray study. Biophysical Journal, 90(6), 2038-2050. Kim, Y. K., Cho, Y. Y., An, B. H., Lim, S. I., Lim, J. A., Cho, I. S., & An, D. J. (2016). Molecular characterization of the spike and ORF3 genes of porcine epidemic diarrhea virus in the Philippines. Archives of Virology, 161(5), 1323-1328. King, A. M., Lefkowitz, E., Adams, M. J., & Carstens, E. B. (Eds.). (2011). Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier. Knight, A., & Mindell, D. P. (1993). Substitution bias, weighting of DNA sequence evolution, and the phylogenetic position of Fea's viper. Systematic Biology, 42(1), 18-31. Kocherhans, R., Bridgen, A., Ackermann, M., & Tobler, K. (2001). Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes, 23(2), 137-144. Kosakovsky Pond, S. L., Murrell, B., Fourment, M., Frost, S. D., Delport, W., &Scheffler, K. (2011). A random effects branch-site model for detecting episodic diversifying selection. Molecular Biology and Evolution, 28(11), 3033-3043. Kubota, S., Sasaki, O., Amimoto, K., Okada, N., Kitazima, T., &Yasuhara, H. (1999). Detection of porcine epidemic diarrhea virus using polymerase chain reaction and comparison of the nucleocapsid protein genes among strains of the virus. Journal of Veterinary Medical Science, 61(7), 827-830. Kweon, C. H., Kwon, B. J., Jung, T. S., Kee, Y. J., Hur, D. H., Hwang, E. K., ... & An, S. H. (1993). Isolation of porcine epidemic diarrhea virus (PEDV) in Korea. Korean Journal of Veterinary Research, 33(2), 249-54. Kweon, C. H., Kwon, B. J., Lee, J. G., Kwon, G. O., & Kang, Y. B. (1999). Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate. Vaccine, 17(20-21), 2546-2553. Lai, M. C., Perlman S., Anderson L. J. (2007). Coronaviridae. In: Knipe DM, Howley PM, Griffin DE, Martin MA, Lamb RA, Roizman B, Straus SE, editors. Fields virology. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 1306–36. Lai, M. M. (1992). RNA recombination in animal and plant viruses. Microbiological Reviews, 56(1), 61-79. Lai, M. M., & Cavanagh, D. (1997). The molecular biology of coronaviruses. In Advances in virus research (Vol. 48, pp. 1-100). Academic Press. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., ... & Thompson, J. D. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. Lee, C. (2015). Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virology Journal, 12(1), 193. Lee, D. K., Park, C. K., Kim, S. H., & Lee, C. (2010). Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea. Virus Research, 149(2), 175-182. Lee, S., & Lee, C. (2014). Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013. Emerging Infectious Diseases, 20(7), 1223. Lee, S., Park, G. S., Shin, J. H., & Lee, C. (2014). Full-genome sequence analysis of a variant strain of porcine epidemic diarrhea virus in South Korea. Genome Announcements, 2(6), e01116-14. Lemey, P., Rambaut, A., Drummond, A. J., & Suchard, M. A. (2009). Bayesian phylogeography finds its roots. PLoS Computational Biology, 5(9), e1000520. Li, B. X., Ge, J. W., & Li, Y. J. (2007). Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology, 365(1), 166-172. Li, F. (2015). Receptor recognition mechanisms of coronaviruses: a decade of structural studies. Journal of Virology, 89(4), 1954-1964. Li, R., Qiao, S., Yang, Y., Guo, J., Xie, S., Zhou, E., & Zhang, G. (2016). Genome sequencing and analysis of a novel recombinant porcine epidemic diarrhea virus strain from Henan, China. Virus Genes, 52(1), 91-98. Li, W., Li, H., Liu, Y., Pan, Y., Deng, F., Song, Y., ... & He, Q. (2012). New variants of porcine epidemic diarrhea virus, China, 2011. Emerging Infectious Diseases, 18(8), 1350. Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. Lin, C. M., Saif, L. J., Marthaler, D., & Wang, Q. (2016). Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains. Virus Research, 226, 20-39. Lin, C. N., Chung, W. B., Chang, S. W., Wen, C. C., Liu, H., Chien, C. H., & Chiou, M. T. (2014). US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013–2014. Journal of Veterinary Medical Science, 76(9), 1297-1299. Litwin, S., & Jores, R. (1992). Shannon information as a measure of amino acid diversity. In Theoretical and experimental insights into immunology (pp. 279-287). Springer, Berlin, Heidelberg. Lowe, J., Gauger, P., Harmon, K., Zhang, J., Connor, J., Yeske, P., ... & Main, R. (2014). Role of transportation in spread of porcine epidemic diarrhea virus infection, United States. Emerging Infectious Diseases, 20(5), 872. Lu, Y., Lu, X., & Denison, M. R. (1995). Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. Journal of Virology, 69(6), 3554-3559. Lv, C., Xiao, Y., Li, X., & Tian, K. (2016). Porcine epidemic diarrhea virus: current insights. Virus Adaptation and Treatment, 8, 1-12. Ma, Y., Zhang, Y., Liang, X., Lou, F., Oglesbee, M., Krakowka, S., & Li, J. (2015). Origin, evolution, and virulence of porcine deltacoronaviruses in the United States. MBio, 6(2), e00064-15. Machamer, C. E., & Youn, S. (2006). The transmembrane domain of the infectious bronchitis virus E protein is required for efficient virus release. In The Nidoviruses (pp. 193-198). Springer, Boston, MA. Martin, D. P., Posada, D., Crandall, K. A., & Williamson, C. (2005). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Research & Human Retroviruses, 21(1), 98-102. Masters, P. S., Perlman, S. (2013). Coronaviridae ( pp. 825– 858). In Knipe DM, Howley PM (ed), Fields virology, Lippincott Williams & Wilkins, Philadelphia, PA. Mesquita, J. R., Hakze‐van der Honing, R., Almeida, A., Lourenco, M., Poel, W. H. M., & Nascimento, M. S. J. (2015). Outbreak of porcine epidemic diarrhea virus in Portugal, 2015. Transboundary and Emerging Diseases, 62(6), 586-588. Mielech, A. M., Chen, Y., Mesecar, A. D., & Baker, S. C. (2014). Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Research, 194, 184-190. Mole, B. (2013). Deadly pig virus slips through US borders. Nature, 499(7459), 388. More-Bayona, J., Ramírez-Velásquez, M., Manchego-Sayán, A., Quevedo-Valle, M., & Rivera-Gerónimo, H. (2014, June). Molecular detection of emerging strains of PEDV in Peru. In Proceedings of the 23rd IPVS Congress, Cancun, Mexico (pp. 8-11). Murakami, S., Miyazaki, A., Takahashi, O., Hashizume, W., Hase, Y., Ohashi, S., & Suzuki, T. (2015). Complete genome sequence of the porcine epidemic diarrhea virus variant Tottori2/JPN/2014. Genome Announcements, 3(4), e00877-15. Murphy, F. A., Gibbs, E. P. J., Horzinek, M. C., & Studdert, M. J. (1999). Veterinary virology. (pp 496-501), Elsevier. Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S. L., & Scheffler, K. (2013). FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Molecular Biology and Evolution, 30(5), 1196-1205. Nam, E., & Lee, C. (2010). Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection. Veterinary Microbiology, 144(1-2), 41-50. Netland, J., DeDiego, M. L., Zhao, J., Fett, C., Álvarez, E., Nieto-Torres, J. L., ...& Perlman, S. (2010). Immunization with an attenuated severe acute respiratory syndrome coronavirus deleted in E protein protects against lethal respiratory disease. Virology, 399(1), 120-128. Nielsen, R. (2005). Molecular signatures of natural selection. Annual Review of Genetics., 39, 197-218. O'Dea, E. B., Snelson, H., & Bansal, S. (2015). State-level transport flows are predictive of the dynamics of porcine epidemic diarrhea virus. bioRxiv preprint, 1-20. Oh, J., Lee, K. W., Choi, H. W., & Lee, C. (2014). Immunogenicity and protective efficacy of recombinant S1 domain of the porcine epidemic diarrhea virus spike protein. Archives of Virology, 159(11), 2977-2987. Ojkic, D., Hazlett, M., Fairles, J., Marom, A., Slavic, D., Maxie, G., ... & Burlatschenko, S. (2015). The first case of porcine epidemic diarrhea in Canada. The Canadian Veterinary Journal, 56(2), 149. Oka, T., Saif, L. J., Marthaler, D., Esseili, M. A., Meulia, T., Lin, C. M., ... & Wang, Q. (2014). Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene. Veterinary Microbiology, 173(3-4), 258-269. Olanratmanee, E. O., Kunavongkrit, A., & Tummaruk, P. (2010). Impact of porcine epidemic diarrhea virus infection at different periods of pregnancy on subsequent reproductive performance in gilts and sows. Animal Reproduction Science, 122(1-2), 42-51. Oldham, J. (1972) Letter to the editor. Pig Farming suppl:72–73 Oostra, M., Hagemeijer, M. C., van Gent, M., Bekker, C. P., teLintelo, E. G., Rottier, P. J., & de Haan, C. A. (2008). Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning. Journal of Virology, 82(24), 12392-12405. Opriessnig, T. (2015). Re-emergence of porcine epidemic diarrhea virus in the global pig population. Veterinary Journal (London, England: 1997), 204(2), 131. Ortego, J., Ceriani, J. E., Patiño, C., Plana, J., &Enjuanes, L. (2007). Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology, 368(2), 296-308. Ouyang, K., Shyu, D. L., Dhakal, S., Hiremath, J., Binjawadagi, B., Lakshmanappa, Y. S., ... & Zhang, J. (2015). Evaluation of humoral immune status in porcine epidemic diarrhea virus (PEDV) infected sows under field conditions. Veterinary Research, 46(1), 140. Pan, K., & Deem, M. W. (2011). Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza. Journal of the Royal Society Interface, 8(64), 1644-1653. Pan, Y., Tian, X., Li, W., Zhou, Q., Wang, D., Bi, Y., ... & Song, Y. (2012). Isolation and characterization of a variant porcine epidemic diarrhea virus in China. Virology Journal, 9(1), 195. Park, J. E., & Shin, H. J. (2014). Porcine epidemic diarrhea virus infects and replicates in porcine alveolar macrophages. Virus Research, 191, 143-152. Park, S. J., Kim, H. K., Song, D. S., Moon, H. J., & Park, B. K. (2011). Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field isolates in Korea. Archives of Virology, 156(4), 577-585. Park, S. J., Moon, H. J., Yang, J. S., Lee, C. S., Song, D. S., Kang, B. K., & Park, B. K. (2007). Sequence analysis of the partial spike glycoprotein gene of porcine epidemic diarrhea viruses isolated in Korea. Virus Genes, 35(2), 321-332. Park, S. J., Song, D. S., & Park, B. K. (2013). Molecular epidemiology and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field isolates in Korea. Archives of Virology, 158(7), 1533-1541. Park, S., Kim, S., Song, D., & Park, B. (2014). Novel porcine epidemic diarrhea virus variant with large genomic deletion, South Korea. Emerging Infectious Diseases, 20(12), 2089. Pasick, J., Berhane, Y., Ojkic, D., Maxie, G., Embury‐Hyatt, C., Swekla, K., ... & Alexandersen, S. (2014). Investigation into the role of potentially contaminated feed as a source of the first‐detected outbreaks of porcine epidemic diarrhea in Canada. Transboundary and Emerging Diseases, 61(5), 397-410. Peng, G., Sun, D., Rajashankar, K. R., Qian, Z., Holmes, K. V., & Li, F. (2011). Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proceedings of the National Academy of Sciences, 108(26), 10696-10701. Pensaert, M. B., & De Bouck, P. (1978). A new coronavirus-like particle associated with diarrhea in swine. Archives of Virology, 58(3), 243-247. Pensaert, M. B., De bouck, P., & Reynolds, D. J. (1981). An immunoelectron microscopic and immunofluorescent study on the antigenic relationship between the coronavirus-like agent, CV 777, and several coronaviruses. Archives of Virology, 68(1), 45-52. Perez, A. M., Ward, M. P., & Carpenter, T. E. (2004). Control of a foot-and-mouth disease epidemic in Argentina. Preventive Veterinary Medicine, 65(3-4), 217-226. Pervushin, K., Tan, E., Parthasarathy, K., Lin, X., Jiang, F. L., Yu, D., ...& Torres, J. (2009). Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathogens, 5(7), e1000511. Pond, S. L. K., & Frost, S. D. (2005). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 21(10), 2531-2533. Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25(7), 1253-1256. Pritchard, C., Paton, D., Wibberley, G., Ibata, G. (1999). Transmissible gastroenteritis and porcine epidemic diarrhoea in Britain. Veterinary Record 144, 616–618. Puranaveja, S., Poolperm, P., Lertwatcharasarakul, P., Kesdaengsakonwut, S., Boonsoongnern, A., Urairong, K., ... & Thanawongnuwech, R. (2009). Chinese-like strain of porcine epidemic diarrhea virus, Thailand. Emerging Infectious Diseases, 15(7), 1112. Qinghua, C. (1992). Investigation on epidemic diarrhea in pigs in Qinghai region [J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 3, 019. Rambaut, A. (2014). FigTree-v1. 4.2. 2014. [http://beast.bio.ed.ac.uk/figtree]. Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). BEAST Software-Bayesian Evolutionary Analysis Sampling Trees. Tracer v1, 6. [http://beast.bio.ed.ac.uk/Tracer] Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3), 552-569. Saif, L. J., Pensaert, M .B., Sestack, K., Yeo, S. G., Jung, K. (2012). Diseases of Swine. In: Straw, B.E., Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W. (Eds.), Coronaviruses (pp. 501-524). Wiley-Blackwell. Sasaki, Y., Alvarez, J., Sekiguchi, S., Sueyoshi, M., Otake, S., & Perez, A. (2016). Epidemiological factors associated to spread of porcine epidemic diarrhea in Japan. Preventive Veterinary Medicine, 123, 161-167. Sasaki, Y., Toyomaki, H., Sekiguchi, S., Sueyoshi, M., Makita, K., Otake, S., ... & Alvarez, J. (2017). Spatial dynamics of porcine epidemic diarrhea (PED) spread in the southern Kyushu, Japan. Preventive Veterinary Medicine, 144, 81-88. Sato, T., Takeyama, N., Katsumata, A., Tuchiya, K., Kodama, T., & Kusanagi, K. I. (2011). Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo. Virus Genes, 43(1), 72-78. Schmidt, H. A., Strimmer, K., Vingron, M., & von Haeseler, A. (2002). TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 18(3), 502-504. Schwartz, K., Henry, S., Tokach, L., Potter, M., Davidson, D., Egnor, C., & PFFJ, L. (2013). Infective material, concepts and procedures for intentional sow herd exposure to Porcine Epidemic Diarrhea virus. Iowa State University, 8. Schwartz, T. J., Rademacher, C. J., Gimenez-Lirola, L. G., Sun, Y., & Zimmerman, J. J. (2015). Evaluation of the effects of PEDv vaccine on PEDv naïve and previously PEDv-exposed sows in a challenge model comparing immune response and preweaning mortality. In James D. McKeanSwine Disease Conference Proceedings, Iowa State University (pp. 36-40). Scott, A., McCluskey, B., Brown-Reid, M., Grear, D., Pitcher, P., Ramos, G., ... &Singrey, A. (2016). Porcine epidemic diarrhea virus introduction into the United States: root cause investigation. Preventive Veterinary Medicine, 123, 192-201. Shannon, C. E. (1948). A Mathematical Theory of Communication, Bell System Technical Journal, vol. 27, 379-423 & 623-656, July & October. Shibata, I., Tsuda, T., Mori, M., Ono, M., Sueyoshi, M., & Uruno, K. (2000). Isolation of porcine epidemic diarrhea virus in porcine cell cultures and experimental infection of pigs of different ages. Veterinary Microbiology, 72(3-4), 173-182. Shirato, K., Matsuyama, S., Ujike, M., & Taguchi, F. (2011). Role of proteases in the release of porcine epidemic diarrhea virus from infected cells. Journal of Virology, 85(15), 7872-7880. Smíd, B., Valícek, L., Rodák, L., Kudrna, J., & Musilová, J. (1993). Detection of porcine epidemic diarrhea virus using electron microscopy in the Czech Republic. Veterinarni Medicina, 38(6), 333-341. Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., Thiel, V., Ziebuhr, J., Poon, L. L., ... &Gorbalenya, A. E. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of Molecular Biology, 331(5), 991-1004. Song, D. S., Oh, J. S., Kang, B. K., Yang, J. S., Moon, H. J., Yoo, H. S., ... & Park, B. (2007). Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain. Research in Veterinary Science, 82(1), 134-140. Song, D. S., Yang, J. S., Oh, J. S., Han, J. H., & Park, B. K. (2003). Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF 3. Vaccine, 21(17-18), 1833-1842. Song, D., & Park, B. (2012). Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes, 44(2), 167-175. Song, D., Huang, D., Peng, Q., Huang, T., Chen, Y., Zhang, T., ... & Tang, Y. (2015). Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea viruses associated with outbreaks of severe diarrhea in piglets in Jiangxi, China 2013. PloS One, 10(3), e0120310. Song, D., Moon, H., & Kang, B. (2015). Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clinical and Experimental Vaccine Research, 4(2), 166-176. Spaan, W., Delius, H., Skinner, M., Armstrong, J., Rottier, P., Smeekens, S., ... & Siddell, S. G. (1983). Coronavirus mRNA synthesis involves fusion of non‐contiguous sequences. The EMBO Journal, 2(10), 1839-1844. Srinuntapunt, S., Trongwongsa, L., Antarasena, C., Sangsuwan, W., & Prommuang, P. (1995). Porcine epidemic diarrhea in Trang Province. Journal of the Thai Veterinary Medical Association, 46, 11-9. Stadler, J., Zoels, S., Fux, R., Hanke, D., Pohlmann, A., Blome, S., ... & Ladinig, A. (2015). Emergence of porcine epidemic diarrhea virus in southern Germany. BMC Veterinary Research, 11(1), 142. Stanhope, M. J., Brown, J. R., & Amrine-Madsen, H. (2004). Evidence from the evolutionary analysis of nucleotide sequences for a recombinant history of SARS-CoV. Infection, Genetics and Evolution, 4(1), 15-19. Steinrigl, A., Fernández, S. R., Stoiber, F., Pikalo, J., Sattler, T., & Schmoll, F. (2015). First detection, clinical presentation and phylogenetic characterization of Porcine epidemic diarrhea virus in Austria. BMC Veterinary Research, 11(1), 310. Stevenson, G. W., Hoang, H., Schwartz, K. J., Burrough, E. R., Sun, D., Madson, D., ... & Koster, L. G. (2013). Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. Journal of Veterinary Diagnostic Investigation, 25(5), 649-654. Strimmer, K., & Von Haeseler, A. (1997). Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proceedings of the National Academy of Sciences, 94(13), 6815-6819. Su, D., Lou, Z., Sun, F., Zhai, Y., Yang, H., Zhang, R., ... & Rao, Z. (2006). Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10. Journal of Virology, 80(16), 7902-7908. Suchard, M. A., Weiss, R. E., &Sinsheimer, J. S. (2001). Bayesian selection of continuous-time Markov chain evolutionary models. Molecular Biology and Evolution, 18(6), 1001-1013. Sun, D., Wang, X., Wei, S., Chen, J., & Feng, L. (2016). Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review. Journal of Veterinary Medical Science, 78(3), 355-363. Sun, M., Ma, J., Wang, Y., Wang, M., Song, W., Zhang, W., ... & Yao, H. (2015). Genomic and epidemiological characteristics provide new insights into the phylogeographical and spatiotemporal spread of porcine epidemic diarrhea virus in Asia. Journal of Clinical Microbiology, 53(5), 1484-1492. Sun, R. Q., Cai, R. J., Chen, Y. Q., Liang, P. S., Chen, D. K., & Song, C. X. (2012). Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerging Infectious Diseases, 18(1), 161-163. Sun, R., Leng, Z., Zhai, S. L., Chen, D., & Song, C. (2014). Genetic variability and phylogeny of current Chinese porcine epidemic diarrhea virus strains based on spike, ORF3, and membrane genes. The Scientific World Journal, 2014. Sung, M. H., Deng, M. C., Chung, Y. H., Huang, Y. L., Chang, C. Y., Lan, Y. C., ... & Chao, D. Y. (2015). Evolutionary characterization of the emerging porcine epidemic diarrhea virus worldwide and 2014 epidemic in Taiwan. Infection, Genetics and Evolution, 36, 108-115. Sutton, G., Fry, E., Carter, L., Sainsbury, S., Walter, T., Nettleship, J., ... & Siddell, S. (2004). The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure, 12(2), 341-353. Suzuki, T., Murakami, S., Takahashi, O., Kodera, A., Masuda, T., Itoh, S., ... & Tsutsui, T. (2015). Molecular characterization of pig epidemic diarrhoea viruses isolated in Japan from 2013 to 2014. Infection, Genetics and Evolution, 36, 363-368. Takahashi, K., Okada, K., Ohshima, K. (1983). An outbreak of swine diarrhea of a new-type associated with coronavirus-like particles in Japan. The Japanese Journal of Veterinary Science, 45(6), 829-832. Tang, X. C., Zhang, J. X., Zhang, S. Y., Wang, P., Fan, X. H., Li, L. F., ... & Xu, K. M. (2006). Prevalence and genetic diversity of coronaviruses in bats from China. Journal of Virology, 80(15), 7481-7490. Tang, X., Li, G., Vasilakis, N., Zhang, Y., Shi, Z., Zhong, Y., ...& Zhang, S. (2009). Differential stepwise evolution of SARS coronavirus functional proteins in different host species. BMC Evolutionary Biology, 9(1), 52. Temeeyasen, G., Srijangwad, A., Tripipat, T., Tipsombatboon, P., Piriyapongsa, J., Phoolcharoen, W., ...&Nilubol, D. (2014). Genetic diversity of ORF3 and spike genes of porcine epidemic diarrhea virus in Thailand. Infection, Genetics and Evolution, 21, 205-213. Teoh, K. T., Siu, Y. L., Chan, W. L., Schlüter, M. A., Liu, C. J., Peiris, J. M., ... &Nal, B. (2010). The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Molecular Biology of the Cell, 21(22), 3838-3852. Theuns, S., Conceição-Neto, N., Christiaens, I., Zeller, M., Desmarets, L. M., Roukaerts, I. D., ... & Nauwynck, H. J. (2015). Complete genome sequence of a porcine epidemic diarrhea virus from a novel outbreak in belgium, january 2015. Genome Announcements, 3(3), e00506-15. Thomas, J. T., Chen, Q., Gauger, P. C., Giménez-Lirola, L. G., Sinha, A., Harmon, K. M., ... & Welch, M. W. (2015). Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs. PLoS One, 10(10), e0139266. Thomas, P. (2014). Field experiences using porcine epidemic diarrhea virus (PEDV) vaccine in herds experiencing endemic disease., abstr 2014 Iowa State University Swine Disease Conference for Swine Practitioners, Ames, Iowa, Thomas, P. R., Ramirez, A., Zhang, J., Ellingson, J. S., & Myers, J. N. (2015). Methods for inactivating PEDV in hog trailers. Animal Industry Report, 661(1), 91. Tian, P. F., Jin, Y. L., Xing, G., Qv, L. L., Huang, Y. W., & Zhou, J. Y. (2014). Evidence of recombinant strains of porcine epidemic diarrhea virus, United States, 2013. Emerging Infectious Diseases, 20(10), 1735. Tian, Y., Yu, Z., Cheng, K., Liu, Y., Huang, J., Xin, Y., ...& Feng, N. (2013). Molecular characterization and phylogenetic analysis of new variants of the porcine epidemic diarrhea virus in Gansu, China in 2012. Viruses, 5(8), 1991-2004. Tizard, I. R. (2009). Veterinary Immunology (pp 239-254), vol 8. Saunders Elsevier. Tsuda, T. (1997). Porcine epidemic diarrhea Its diagnosis and control. Proceedings of Japan Pig Veterinary Society., 31, 21-28. Utiger, A., Frei, A., Carvajal, A., & Ackermann, M. (1995). Studies on the in vitro and in vivo host range of porcine epidemic diarrhoea virus. In Corona-and Related Viruses (pp. 131-133). Springer, Boston, MA. Van der Wolf, P. J., Van Walderen, A., Meertens, M. N., Van Hout, A. J., Duinhof, T. F., & Geudeke, M. J. (2015, April). First case of porcine epidemic diarrhoea (PED) caused by a new variant of PED virus in the Netherlands. In Proc. 7th European Symposium of Porcine Health Management (Vol. 79). Varón, A., & Wheeler, W. C. (2013). Local search for the generalized tree alignment problem. BMC Bioinformatics, 14(1), 66. Vennema, H., Godeke, G. J., Rossen, J. W., Voorhout, W. F., Horzinek, M. C., Opstelten, D. J., & Rottier, P. J. (1996). Nucleocapsid‐independent assembly of coronavirus‐like particles by co‐expression of viral envelope protein genes. The EMBO Journal, 15(8), 2020-2028. Vexler, A., Deng, W., & Wilding, G. E. (2013). Nonparametric Bayes factors based on empirical likelihood ratios. Journal of statistical planning and inference, 143(3), 611-620. Vlasova, A. N., Marthaler, D., Wang, Q., Culhane, M. R., Rossow, K. D., Rovira, A., ... & Saif, L. J. (2014). Distinct characteristics and complex evolution of PEDV strains, North America, May 2013–February 2014. Emerging Infectious Diseases, 20(10), 1620. Vui, D. T., Thanh, T. L., Tung, N., Srijangwad, A., Tripipat, T., Chuanasa, T., & Nilubol, D. (2015). Complete genome characterization of porcine epidemic diarrhea virus in Vietnam. Archives of Virology, 160(8), 1931-1938. Vui, D. T., Tung, N., Inui, K., Slater, S., & Nilubol, D. (2014). Complete genome sequence of porcine epidemic diarrhea virus in Vietnam. Genome Announcements, 2(4), e00753-14. Wang, J., Zhao, P., Guo, L., Liu, Y., Du, Y., Ren, S., ...& Liu, S. (2013). Porcine epidemic diarrhea virus variants with high pathogenicity, China. Emerging Infectious Diseases, 19(12), 2048. Wang, K., &Samudrala, R. (2006). Incorporating background frequency improves entropy-based residue conservation measures. BMC Bioinformatics, 7(1), 385. Wang, K., Lu, W., Chen, J., Xie, S., Shi, H., Hsu, H., ... & Schwarz, W. (2012). PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Letters, 586(4), 384-391. Wang, L., Byrum, B., & Zhang, Y. (2014). New variant of porcine epidemic diarrhea virus, United States, 2014. Emerging Infectious Diseases, 20(5), 917. Wang, X. M., Niu, B. B., Yan, H., Gao, D. S., Yang, X., Chen, L., ...& Wang, C. Q. (2013). Genetic properties of endemic Chinese porcine epidemic diarrhea virus strains isolated since 2010. Archives of Virology, 158(12), 2487-2494. Wang, Y., Gao, X., Yao, Y., Zhang, Y., Lv, C., Sun, Z., ... & Li, X. (2015). The dynamics of Chinese variant porcine epidemic diarrhea virus production in Vero cells and intestines of 2-day old piglets. Virus Research, 208, 82-88. Wicht, O., Li, W., Willems, L., Meuleman, T. J., Wubbolts, R. W., van Kuppeveld, F. J., ... & Bosch, B. J. (2014). Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture. Journal of Virology, 88(14), 7952-7961. Williamson, S., Strugnell, B., Thomson, J., Webster, G., McOrist, S., & Clarke, H. (2013). Emergence of severe porcine epidemic diarrhoea in pigs in the USA. Veterinary Record, 173(6), 146-148. Wilson, L., Mckinlay, C., Gage, P., &Ewart, G. (2004). SARS coronavirus E protein forms cation-selective ion channels. Virology, 330(1), 322-331. Woo, P. C., Lau, S. K., Lam, C. S., Lau, C. C., Tsang, A. K., Lau, J. H., ...& Zheng, B. J. (2012). Discovery of seven novel mammalian and avian coronaviruses in Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. Journal of Virology,86(7): 3995-4008. Wood, E. N. (1977). An apparently new syndrome of porcine epidemic diarrhoea. The Veterinary Record, 100(12), 243. Wu, K., Peng, G., Wilken, M., Geraghty, R. J., & Li, F. (2012). Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. Journal of Biological Chemistry, 287(12), 8904-8911. Xia, X. (2013). DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Eolution, 30(7), 1720-1728. Xing, Y., Chen, J., Tu, J., Zhang, B., Chen, X., Shi, H., ... & Chen, Z. (2013). The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. Journal of General Virology, 94(7), 1554-1567. Xu, X., Liu, Y., Weiss, S., Arnold, E., Sarafianos, S. G., & Ding, J. (2003). Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Research, 31(24), 7117-7130. Xuan, H., Xing, D. K., Wang, D. Y., Zhu, W., Zhao, F., & Gong, H. (1984). Study on the culture of porcine epidemic diarrhea virus adapted to fetal porcine intestine primary cell monolayer. Chinese Journal of Veterinary Science, 4(3), 202-208. Yamamoto, R., Soma, J., Nakanishi, M., Yamaguchi, R., & Niinuma, S. (2015). Isolation and experimental inoculation of an S INDEL strain of porcine epidemic diarrhea virus in Japan. Research in Veterinary Science, 103, 103-106. Yang, D. Q., Ge, F. F., Ju, H. B., Wang, J., Liu, J., Ning, K., ... & Sun, Q. Y. (2014). Whole-genome analysis of porcine epidemic diarrhea virus (PEDV) from eastern China. Archives of Virology, 159(10), 2777-2785. Yang, X., Huo, J. Y., Chen, L., Zheng, F. M., Chang, H. T., Zhao, J., ...& Wang, C. Q. (2013). Genetic variation analysis of reemerging porcine epidemic diarrhea virus prevailing in central China from 2010 to 2011. Virus Genes, 46(2), 337-344. Yang, Z., Nielsen, R., Goldman, N., & Pedersen, A. M. K. (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics, 155(1), 431-449. Zhai, Y., Sun, F., Li, X., Pang, H., Xu, X., Bartlam, M., & Rao, Z. (2005). Insights into SARS-CoV transcription and replication from the structure of the nsp7–nsp8 hexadecamer. Nature Structural and Molecular Biology, 12(11), 980. Zhang, Q., Hu, R., Tang, X., Wu, C., He, Q., Zhao, Z., ...& Wu, B. (2013). Occurrence and investigation of enteric viral infections in pigs with diarrhea in China. Archives of Virology, 158(8), 1631-1636. Zhang, Q., Shi, K., & Yoo, D. (2016). Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology, 489, 252-268. Zhang, Y., Yao, Y., Gao, X., Wang, Y., Jia, X., Xiao, Y., ... & Tian, K. (2016). Development of a neutralizing monoclonal antibody against porcine epidemic diarrhea virus S1 protein. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 35(1), 37-40. Zhang, Z., Chen, J., Shi, H., Chen, X., Shi, D., Feng, L., & Yang, B. (2012). Identification of a conserved linear B-cell epitope in the M protein of porcine epidemic diarrhea virus. Virology Journal, 9(1), 225. Ziebuhr, J. (2005). The coronavirus replicase. In Coronavirus replication and reverse genetics (pp. 57-94). Springer, Berlin, Heidelberg. Ziebuhr, J., Snijder, E. J., & Gorbalenya, A. E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology, 81(4), 853-879. | 摘要: | 自2010年以來,屬於Genogroup 2的新變異PEDV在中國傳播,並進一步傳播到美國和其他亞洲國家包括台灣。為了詳細描述豬流行性下痢病毒 (PEDV) 的時間和地理關係,本研究系統地評估了整個PEDV基因組的每個基因的演化模式和親緣關係的解析,以確定哪些基因提供最大的解析力。從GenBank下載了48個全基因組序列,並分為三個數據集,即Worldwide,Genogroup 2和China,以涵蓋不同範圍的時間和空間趨勢。然後每個數據集被不同的基因區分成不同的序列比對,用於似然性映射和親緣關係分析。我們的研究顯示,NSP3和S基因都具有最高的親緣關係訊號,具有與從完整基因組獲得的相似的取代率和親緣關係拓撲結構。將來自三株PEDV感染豬的臨床檢體的NSP3基因序列與來自GenBank的其他病毒株進行比對,結果顯示導致台灣2014年爆發的PEDV與來自Genogroup 2的美國演化分枝I聚集在一起。此外,我們從唯一台灣的全序列PEDV發現此新變異PEDV是一經過重組 (斷點位置就在NSP3後面及S基因前面) 的病毒。因此,本研究的結果提供日後研究者需要瞭解新發生流行的病毒是否為重組病毒,可藉由定序NSP3 和S基因即可得知,而不需做全長定序。從PEDV全基因組所建構的PEDV族群演化史顯示PEDV起源於1956年,病毒以每年1.79×10-3核苷酸取代/位點的速度演化。全球的PEDV可分為G1及G2基因群;又分別區分G1a、G1b (Classical clade) 與G2a、G2b (Pandemic clade) 亞群。無論Worldwide、Genogroup2及China數據集中的S基因均有比同數據集中的NSP3及E基因較快的演化速率。PEDV的有效族群規模變化 (Bayesian skyline plot;BSP) 顯示從1978年至2010年保持穩定,然而PEDV S基因在2012年起的遺傳多樣性有比較明顯的變化,可能與2013年在美國爆發的新變異毒株有關。全基因組的平均dN/dS的比值均小於1,顯示處於負向選擇,但在S及NSP3基因仍可檢測出個別的陽性選擇位點。2013至2014年在美國、日本及台灣爆發的新變異PEDV起源地點均屬豬隻飼養密度較高地區,並經由豬隻、飼料及化製車的長距離運輸及農場間近距離相互傳播可能是造成快速散播的主因。應用BSP分析,配合mismatch distribution分析及Tajima's D 中性檢測partial S基因等族群變動分析結果顯示2013至2014年爆發的新變異PEDV是處於族群擴張狀態。其中以台灣爆發的新變異PEDV的partial S基因有最快的演化速率及最大的遺傳距離。儘管美國、日本及台灣的病毒株在遺傳上密切相關,但病毒的演化速率、遺傳距離與選擇壓力不同,這可能與飼養環境及生物安全等其他因素有關。 Since 2010, a new variant of porcine epidemic diarrhea virus (PEDV) belonging to Genogroup 2 has been transmitting in China and further spreading to the Unites States and other Asian countries including Taiwan. In order to characterize in detail the temporal and geographic relationships among PEDV strains, the present study systematically evaluated the evolutionary patterns and phylogenetic resolution in each gene of the whole PEDV genome in order to determine which regions provided the maximal interpretative power.Forty-eight full genome sequences were downloaded from GenBank and divided into three groups, namely, worldwide, Genogroup 2 and China, to cover different ranges of spatio-temporal trends. Each dataset was then divided into different alignments by different genes for likelihood mapping and phylogenetic analysis. Our study suggested that both NSP3 and S genes contained the highest phylogenetic signal with substitution rate and phylogenetic topology similar to those obtained from the complete genome.The NSP3 gene sequences from three clinical samples of swine with PEDV infections were aligned with other strains available from GenBank and the results suggested that the virus responsible for the 2014 PEDV outbreak in Taiwan clustered together with Clade I from the US within Genogroup 2.In addition, we found that the new variant PEDV from the only Taiwanese full genome sequence PEDV is a virus that has been recombined (the breakpoint is just behind NSP3 and in front of the S gene). Therefore, the results of this study provide a method for future researchers to reveal whether a newly occurring virus is a recombinant virus by sequencing the NSP3 and S genes without the need for full genome sequencing.The evolution history of the PEDV population constructed from the full genome of PEDV showed that PEDV originated in 1956,and the virus evolved at a rate of 1.79×10-3 nucleotide substitution per site per year.The global PEDV can be divided into G1 and G2 genogroups, which can be further divided into G1a, G1b (Classical clade) and G2a, G2b (Pandemic clade) subgroups.The S genes in the Worldwide, Genogroup2, and China datasets all have faster rates of evolution than the NSP3 and E genes in the same dataset.The effective population size (Bayesian skyline plot;BSP) change of PEDV showed that it remained stable from 1978 to 2010. However, the genetic diversity of PEDV S gene began to change significantly in 2012 and this may be correlated tothe occurrence ofthe new variant strains that caused the outbreak in the United States in 2013.The mean dN/dS ratio of the full genome was less than 1, indicating a negative selection; however the individual positive selection sites were still detected in the S and NSP3 genes.The new variant PEDV origins in the United States, Japan and Taiwan from 2013 to 2014 were in areas with high pig breeding density. Long-distance transportation through pigs, feed and rendering truck, and close communication between farms may be the main cause of rapid spread.Application BSP analysis, combined with mismatch distribution analysis and Tajima's D neutral test of partial S gene, showed that the new variant PEDV that led to the outbreak from 2013 to 2014 was in a state of population expansion.Among them, the partial S gene of the new variant PEDV that resulted in the outbreak in Taiwan has the fastest evolution rate and the largest genetic distance.Although the strains of the United States, Japan and Taiwan are genetically closely related, the evolution rate, genetic distance and selection pressure of the virus are different, indicating that other factors such as feeding environment and biosecurity are also relevant. |
URI: | http://hdl.handle.net/11455/98201 | Rights: | 同意授權瀏覽/列印電子全文服務,2021-08-01起公開。 |
Appears in Collections: | 微生物暨公共衛生學研究所 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-107-8098046004-1.pdf | 5.23 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.