Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98203
標題: 雞CD40配體融合細胞素之蛋白質表現與DNA運送
Protein Expression and DNA Transport of Chicken CD40 Ligand Fusion Cytokines
作者: 姜曉雯
Hsiao-Wen Chiang
關鍵字: CD40配體;融合蛋白質;細胞穿透胜肽;CD40L;fusion protein;cell penetrating peptide
引用: Alves, I.D., Goasdoué, N., Correia, I., Aubry, S., Galanth, C., Sagan, S., Lavielle, S., Chassaing, G. (2008). Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Biochim Biophys Acta 1780, 948–959. Arai, K.I., Lee, F., Miyajima, A., Miyatake, S., Arai, N., Yokota, T. (1990). Cytokines: Coordinators of immune and in inflammatory responses. Ann Rev Biochem 59, 783–836. Argos, P. (1990). An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol 211, 943–958. Bechara, C. and Sagan, S. (2013). Cell-penetrating peptides:20 years later, where do we stand? FEBS Lett 587, 1693–1702. Callard, R.E., Armitage, R.J., Fanslow, W., Spriggs, M.K. (1993). CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol 14, 559–564. Charo, I.F., Ransohoff, R.M. (2006). The Many Roles of Chemokines and Chemokine Receptors in Inflammation. N Engl J Med 354, 610–621. Chen, Y.J., Liu, B.R., Dai, Y.H., Lee, C.Y., Chan, M.H., Chen, H.H., Chiang, H.J., Lee, H.J. (2012). A gene delivery system for insect cells mediated by arginine-rich cell-penetrating peptides. Gene 493, 201–210. Chen, X., Zaro, J.L., Shen, W.C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews 65, 1357–1369. Cohen, M.C., Cohen, S. (1996). Cytokine function: a study in biologic diversity. Am J Clin Pathol 105, 589–598. Copolovici, D.M., Langel, K., Eriste, E., Langel, Ü. (2014). Cell-Penetrating Peptides: Design, Synthesis, and Applications. American Chemical Society 8, 1972–1994. Crasto, C.J., Feng, J.A. (2000). LINKER: a program to generate linker sequences for fusion proteins. Protein Engineering 13, 309–312. Crump, M.P., Gong, J.H., Loetscher, P., Rajarathnam, K., Amara, A., Arenzana-Seisdedos, F., Virelizier, J.L., Baggiolini, M., Sykes, B.D., Clark-Lewis, I. (1997). Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 16, 6996–7007. Danese, S., Sans, M., Fiocchi, C. (2004). The CD40/CD40L costimulatory pathway in inflammatory bowel disease. Gut 53, 1035–1043. Duitman, E.H., Orinska, Z., Bulfone-Paus, S. (2011). Mechanisms of cytokine secretion: A portfolio of distinct pathways allows flexibility in cytokine activity. European Journal of Cell Biology 90, 476–483. Fernandez, E.J., Lolis, E. (2002). Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol 42, 469–499. Frankel, A.D., Pabo, C.O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189–1193. George, R.A., Heringa, J. (2002). An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng 15, 871–879. Grammer, A.C., Lipsky, P.E. (2001). CD40-mediated regulation of immune responses by TRAF-dependent and TRAF-independent signaling mechanisms. Adv Immunol 76, 61–178. Green, M., Loewenstein, P.M. (1988). Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55, 1179–1188 Guidotti, G., Brambilla, L., Rossi, D. (2017). Cell-Penetrating Peptides: From Basic Research to Clinics 38, 406–424. Herce, H.D., Garcia, A.E., Litt, J., Kane, R.S., Martin, P., Enrique, N., Rebolledo, A., Milesi, V. (2009). Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophys J 97, 1917–1925. Ho, W.Y., Cooke, M.P., Goodnow, C.C., Davis, M.M. (1994). Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells. J Exp Med 179, 1539–1549. Huang, Y.W., Lee, H.J., Tolliver, L.M., Aronstam, R.S. (2015). Delivery of Nucleic Acids and Nanomaterials by Cell-Penetrating Peptides: Opportunities and Challenges. BioMed Research International 2015, 834079. Joliot, A., Pernelle, C., Deagostini-Bazin, H., Prochiantz, A. (1991). Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 88, 1864–1868. Kondo, E., Saito, K., Tashiro, Y., Kamide, K., Uno, S., Furuya, T., Mashita, M., Nakajima, K., Tsumuraya, T., Kobayashi, N., Nishibori, M., Tanimoto, M., Matsushita, M. (2012). Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat Commun 3, 951. Koren, E., Torchilin, V.P. (2012). Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18, 385–393. Kumar, P., Wu, H., McBride, J.L., Jung, K.E., Kim, M.H., Davidson, B.L., Lee, S.K., Shankar, P., Manjunath, N. (2007). Transvascular delivery of small interfering RNA to the central nervous system. Nature 448, 39–43. Locksley, R.M., Killeen, N., Lenardo, M.J. (2001). The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell 104, 487–501. Luther, S.A., Cyster, J.G. (2001). Chemokines as regulators of T cell differentiation. Nat Immunol 2, 102–107. Marks, J.R., Placone, J., Hristova, K., Wimley, WC. (2011). Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc 133, 8995–9004. Müller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., Barrera, J.L., Mohar, A., Verástegui, E., Zlotnik, A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., Kishimoto, T. (1996). Defects of B-cell lymphopoiesis and bonemarrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638. Nagasawa, T., Tachibana, K., Kishimoto, T. (1998). A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol 10, 179–185. Nishikawa, S., Ogawa, M., Nishikawa, S., Kunisada, T., Kodama, H. (1988). B lymphopoiesis on stromal cell clone: stromal cell clones acting on different stages of B cell differentiation. Eur J Immunol 18, 1767–1771. Pietravalle, F., Lecoanet-Henchoz, S., Blasey, H., Aubry, J.P., Elson, G., Edgerton, M.D., Bonnefoy, J.Y., Gauchat, J.F. (1996). Human native soluble CD40L is a biologically activer trimer, processed inside microsomes. J Biol Chem 271, 5965–5967. Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., Shai, Y. (1992). Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31, 12416–12423. Raucher, D., Ryu, J.S. (2015). Cell-penetratingpeptides: strategies for anticancer treatment. Trends Mol Med 21, 560–570. Read, L.R., Cumberbatch, J.A., Buhr, M.M., Bendall, A.J., Sharif, S. (2005). Cloning and characterization of chicken stromal cell derived factor-1. Developmental and Comparative Immunology 29, 143–152. Regberg, J., Srimanee, A., Langel, U. (2012). Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals 5, 991–1007. Rossi, D., Zlotnik, A. (2000). The biology of chemokines and their receptors. Annu Rev Immunol 18, 217–242. SchÖnbeck, U., Libby, P. (2001). The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58, 4–43. Shirozu, M., Nakano, T., Inazawa, J., Tashiro, K., Tada, H., Shinohara, T., Honjo, T. (1995). Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF-1) gene. Genomics 28, 495–500. Suzuki, Y., Rahman, M., Mitsuya, H. (2001). Diverse transcriptional response of CD4+ T cells to stromal cell-derived factor (SDF)-1: cell survival, promotion and priming effects of SDF-1 on CD4+ T cells. J Immunol 167, 3064–3073. Szekanecz, Z., Koch, A.E. (2001). Chemokines and angiogenesis. Curr Opin Rheumatol 13, 202–208. Tachibana, K., Hirota, S., Iizasa, H., Yoshida, H., Kawabata, K., Kataoka, Y., Kitamura, Y., Matsushima, K., Yoshida, N., Nishikawa, S., Kishimoto, T., Nagasawa, T. (1998). The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594. Tregaskes, C.A., Glansbeek, H.L., Gill, A.C., Hunt, L.G., Burnside, J., Young, J.R. (2005). Conservation of biological properties of the CD40 ligand, CD154 in a non-mammalian vertebrate. Developmental and Comparative Immunology 29, 361–374. Wender, P.A., Mitchell, D.J., Pattabiraman, K., Pelkey, E.T., Steinman, L., Rothbard, J.B. (2000). The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 97, 13003–13008. Ye, J., Liu, E., Yu, Z., Pei, X., Chen, S., Zhang, P., Shin, M.C., Gong, J., He, H., Yang, V.C. (2016). CPP-Assisted Intracellular Drug Delivery, What Is Next? Int J Mol Sci 17, 1892. Zaro, J.L., Shen, W.C. (2015). Cationic and amphipathic cell-penetrating peptides (CPPs): their structures and in vivo studies in drug delivery. Front Chem Sci Eng 9, 407–427. Zou, Y.R., Kottmann, A.H., Kuroda, M., TaniuchiI, Littman, D.R. (1998). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599. 吳佩珊 (2008)。雞CD40L及趨化素之研究.國立中興大學微生物暨公共衛生學研究所。台中。中華民國
摘要: 
基質細胞衍生因子-1 (SDF-1) 是一個具有趨化能力的細胞素,可結合其受體並將多種白血球細胞引導至標靶位置。CD40 配體 (CD40L) 是一種可調節免疫反應之細胞素,例如可活化巨噬細胞。本研究目的是以原核與禽類系統,表現與運送雞的 CD40L融合細胞素,以應用於獸醫領域。首先,我們以胜肽連接子將雞的 SDF-1 和 CD40L衍生的 cDNA 連接,構築到 pET32a 質體中,於大腸桿菌 BL21(DE3) 表現 SDF1-CD40L衍生融合蛋白,分別利用趨化試驗和一氧化氮生成試驗來評估重組 SDF1-CD40L衍生蛋白的趨化性和巨噬細胞活化活性。結果顯示,SDF1-CD40L衍生蛋白具有趨化周邊血單核細胞、以及活化巨噬細胞的活性。為了在禽類系統中表現此雞重組融合細胞素,我們使用細胞穿透胜肽 (CPP) 攜帶 pEGFP-N1 質體,先確定CPP 能夠攜帶 pEGFP-N1 進入到 DF-1 細胞中,成功表現由 pEGFP-N1 編碼的增強型綠色螢光蛋白 (EGFP)。之後,我們將編碼 SDF1-CD40L衍生蛋白之DNA 構築到 pEGFP-N1 或 pVAX1 真核表現載體中,並送入DF-1 細胞表現。結果顯示,CPP 能夠攜帶我們所構築的質體進入 DF-1 細胞中並表現具活性的SDF1-CD40L衍生細胞素。將來,這些融合細胞素可以做為免疫調節分子應用於家禽業。

Stromal cell derived factor-1 (SDF-1) is a chemotactic cytokine, which binds to its receptor and guides various leukocytes to target locations. CD40 ligand (CD40L) is a cytokine that regulates immune responses, such as macrophage activation. The specific aims of this study were to express and transport chicken CD40L fusion cytokines in prokaryotic and avian systems for future veterinary applications. Chicken SDF-1 and CD40L-derived cDNAs were linked by a peptide linker. The resultant construct was cloned into pET32a to express SDF1-CD40L-derived fusion protein in Escherichia coli BL21 (DE3). We measured the chemotactic and macrophage activating activities of recombinant SDF1-CD40L-derived protein based on a chemotaxis assay and a nitric oxide production assay, respectively. SDF1-CD40L-derived protein presented with chemotactic activities on peripheral blood mononuclear cell and macrophage activating activities on macrophages. To express such chicken fusion cytokine in avian system, we performed a feasibility test by using a cell-penetrating peptide (CPP) to carry pEGFP-N1 into the chicken fibroblast cell line, DF-1. The result confirmed that CPP was able to transport pEGFP-N1 into DF-1 cells and successfully expressed enhanced green fluorescent protein encoded by pEGFP-N1. We further introduced DNA constructs encoding SDF1-CD40L-derived protein into pEGFP-N1 or pVAX1 eukaryotic expression vector and delivered them into DF-1 cells. The results showed that CPP was able to transport these constructs and express bioactive SDF1-CD40L-derived cytokines. In the future, these fusion cytokines may be applied as immunomodulatory molecules for poultry industry.
URI: http://hdl.handle.net/11455/98203
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:微生物暨公共衛生學研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105046104-1.pdf3.98 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.