Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98256
標題: 影響飲料塑膠瓶生產量之相關因素探討
Study on the Main Factors Affecting the Production of Beverage PET Bottles
作者: 林瑀涵
Yu-Han Lin
關鍵字: 線性迴歸;傳統製造產業;飲料塑膠瓶;氣溫因素;總體經濟指標;Linear regression model;Traditional manufacturing industry;PET bottle;Temperatures;Macroeconomic index
引用: ㄧ、中文部份 1.吳明隆(2005)。SPSS統計應用學習實務(二版)。台北:知城數位科技股份有限公司。 2.邱皓政(2008)。量化研究與統計分析-SPSS資料分析。台北:五南圖書。 3.陳順宇(2009)。迴歸分析(四版)。台北:三民書局。 4.蕭文龍(2016)。統計分析入門與應用(SPSS中文版+SmartPLS 3)。台北:碁峰資訊股份有限公司。 5.林威廷(1994)。以總體經濟因素預測股票報酬率-類神經網路與多元迴歸之比較研究。國立交通大學資訊管理研究所碩士論文。 6.呂學慶(2002)。台灣地區汽車市場銷售預測之探討。國立中央大學管理學院高階主管企管碩士班碩士論文。 7.林大超(2003)。台灣與美國兩地景氣循環指標關聯性之研究。國立成功大學管理學院高階管理碩士在職專班碩士論文。 8.王琇嫻(2004)。台灣連鎖便利商店市場需求預測-迴歸模型之應用。國立成功大學企業管理研究所碩士論文。 9.陳彥良(2006)。原油價格波動與總體經濟之關聯性-以韓國為例。國立台灣大學國際企業研究所碩士論文。 10.彷立忠(2006 )。設計便利商店冷藏飲品銷售預測系統。僑光科技大學管理學系碩士論文。 11.胡惟欽(2009)。茶飲料市場消費行為之研究。私立淡江大學企業管理學系碩士在職專班碩士論文。 12.歐宗殷(2010)。資料探勘為基礎之零售業銷售預測模式以連鎖超商鮮食商品為例。國立清華大學工業工程與工程管理研究所碩士論文。 13.翁越華(2010)。總體經濟變數對台灣手錶銷售預測之研究。國立台北大學企業管理學系碩士論文。 14.黃碧玉(2010)。金融風暴對奢侈財的影響-以台灣高級進口小客車業為例。國立成功大學高階管理碩士在職專班碩士論文。 15.張學平(2010)。台灣房價之總體經濟因素模式研究。私立中原大學國際貿易學系碩士班碩士論文。 16.蔡芳宜(2010)。台灣瓶裝水市場的出現與發展。國立台灣大學社會科學院社會學研究所碩士班碩士論文。 17.許加融(2011)。全球主機板市場預測之研究。國立交通大學管理學院管理科學學系碩士論文。 18.蘇暐婷(2014)。台灣地區包裝飲料之趨勢分析。交通大學管理學院經營管理學程學位論文。 19.陳昱安(2015)。巨量資料探討及分析-以台灣50ETF為例。私立淡江大學管理科學學系碩士班碩士論文。 20.許家愷(2016)。工業4.0對製造業的影響分析-以元件製造商為例。私立淡江大學企業經營碩士在職專班碩士論文。 21.林全錦(2017)。台灣國產車銷售量與總體經濟因素分析。國立中央大學產業經濟研究所在職專班碩士論文。 22.鄧淑烜(2008)。以包裝即飲飲料銷售探討臺灣飲料消費變遷。中華飲食文化基金會會訊。14(2),31-37。 23.李建邦、林汶鑫、楊至中(2012)。使用資料探勘的技術探討景氣波動與產業銷售彼此之間的關聯。數據分析,7(5),89-106。 24.許勝源與謝岱樺(2013)。冷藏飲品銷售預測模式構建與應用。建國科大社會人文期刊,32 (2),33-54。 25.黃營芳與張志瓏(2013)。台灣飲料店業的銷售預測模型。Journal of Commercial Modernization,227-242 DOI: 10.6132/JCM.2013.7.2.12 26.蔡璧徽與許加融(2017)。納入季節效應之擴散模型於主機板銷售之預測。慈濟科技大學學報,第四期(總二十八期),13-34 頁。 27.鄭育奇(2012)。「國際食品永續包裝應用現況與趨勢」。ITIS智網。 28.洪瑞彬(2012)。歐債危機對國際金融情勢的影響。2012企業重建國際研討會。 29.許溪南與王家美(2010)。2008全球金融海嘯之起因、影響與教訓。證劵櫃檯(144),87-98。 30.食品產業年鑑(2015)。ITIS智網。 31.食品產業年鑑(2017)。ITIS智網。 32.塑膠食品飲料包裝之發展動態 http://www.bia.org.tw/style/content/CN-111b/news_detail.asp?id=35882&lang=1&customer_id=1135&name_id=16664 33.智庫新聞 http://www.brain.com.tw/news/articlecontent?ID=21485 34.中華民國統計資訊網www.stat.gov.tw 35.行政院主計總處 https://www.dgbas.gov.tw/mp.asp?mp=1 36.內政部戶政司 https://www.ris.gov.tw/ 二、英文部份 1.Alexander, E., Yach, D., &; Mensah G. A.(2011). Major multinational food and beverage companies and informal sector contributions to global food consumption: implications for nutrition policy. Globalization and Health, DOI:10.1186/1744-8603-7-26. 2.Alan,K.R.(1990),The impact of interest rates, income, and employment upon regional housing prices. Journal of Real Estate Finance and Economics,3,373-391. 3.Giménez, A., Ares, F., &; Ares G.(2012). Sensory shelf-life estimation: A review of current methodological approaches. Food Research International, 49(1), pp. 311-325. 4.Gardner, E.S.& Diaz, S.J.(2002).Seasonal Adjustment of Inventory Demand Series: A Case Study, International Journal of Forecasting, 18,pp.117-123. 5.Haji-Saeida, M., Sampaa, M, H, O., &; Chmielewskib A, G. (2007). Radiation treatment for sterilization of packaging materials. Radiation Physics and Chemistry, 76(8-9), pp. 1535-1541. 6.Huang,Ying-Fang and Chih-Lung Chang. (2013).Forecast Sales Model of Beverage Store in Taiwan. Journal of Commercial Modernization, 227-242。 7.Lebell Don and O.J.Krasner.(1977).Selecting Environmental Forecasting Techniques from Business Planning Requirements, The Academy of Management Review,Vol.2,No.3,pp.373-383. 8.Myers.C,L.Rabiner and A.Rosenberg.(1980).Performance tradeoffs in dynamic time warping algorithms for isolated word recognition,IEEE Transactions on Acoustics,Speech and Signal Processing,28(6),623-635. 9.Maxime, D., Marcotte, M., &; Arcand, Y. (2006). Development of eco-efficiency indicators for the Canadian food and beverage industry. Journal of Cleaner Production, Vol. 14(6-7), pp. 636-648. 10.Mayes.David G.(2009).'Did recent experience of a financial crisis help in copying with the current financial turmoil? The case of the Nordic countries.'JCMS,VOLUME 47.Number 5.pp.997-1015. 11.Maddala, G.S.(2001).Introduction to econometrics. New York: Macmillian Publishing Company. 12.Neter,Kutner,Nachtshem,and Wasserman.(1996).Applied Linear Regression Models. Burr Ridge, Illinois, USA: Richard D.Irwin,Inc. 13.Romilly,P.,Song,H.X.Liu.(1998).Modeling and forecasting car ownership in Britain. Transport Economic and Policy,32,165-185. 14.Ralph,G.(1999).Urban mobility in the developing world.Transportation Research Part A.33,671-689. 15.Shafiee,S.& Topal, E.(2008).An econometrics view of worldwide fossil fuel consumption and the role of US.. Energy Policy,36,775-786. 16.Shaw, D. (1988). On-site Sample 'Regression: Problems of Non-negative Integer, Truncation and Endogenous Stratification, Journal of Econometrics 37(2),pp.11-23. 17.Welle, F. (2011). Twenty years of PET bottle to bottle recycling—An overview. Resources, Conservation and Recycling, 55(11), pp 865-875. 18.Yang,J.B. and Yan N.J.,2000.'Integrating Case Based Reasoning and Expert System Techniques for Solving Experience Oriented Problems, Journal of Chinese Institute of Engineers, Vol.23,No.1,pp.83-95. 19.World Bank's Data https://data.worldbank.org/ 20.ASIA REGIONAL INTEGRATION CENTER https://aric.adb.org/vietnam/data 21.TRADING ECONOMICS www.tradingeconomics.com 22.International Financial Statistics http://www.imf.org/en/Data
摘要: 
由於全球化經濟時代來臨,國際間重大經濟問題都牽制著各國景氣狀況,如:2008年的金融海嘯和2011歐債危機,皆重創全球經濟的發展與金融市場,使得台灣出口貿易額大幅下跌,進而影響台灣企業之銷售與營收情形。
在經濟自由化與資訊革命的推波助瀾下,台灣的傳統製造廠商已難以低成本在紅海市場中取得競爭優勢,使得台灣許多製造廠商逐漸開始外移至開發中國家以降低生產成本,如中國大陸與東南亞國家等地區。然而,面對國際經濟的不確定性與競爭激烈的市場環境,台灣企業如何有效且準確地預測影響產業成本與營收的關鍵因素,將是企業跳脫紅海桎梏的解決途徑。
本文旨在於探討外在環境因素對台灣企業銷售影響的程度,以中部某上市飲料包材公司為例,從總體經濟層面來分析影響飲料塑膠瓶生產量之因素;此外,包裝飲料會隨著氣溫變化而影響銷售量,故本研究在經濟因素外,亦加入氣溫作為影響飲品銷售量之關鍵因素。本文之研究目為:1.探討飲料塑膠瓶生產量是否與氣溫因素和總體經濟指標有所關聯。2.依據塑膠瓶容量數(ml)大小區分,比較台灣區與東南亞區域是否會因各國經濟指標-國內生產毛額(Gross Domestic Product ,GDP)、台灣區每人均所得(Income Per Capita ,USD)、越南區經濟成長率(Economic Growth Rate)、勞動人口數(Labor Force,15-64歲工作年齡人口總數) 、人口分佈(依據勞動參與率年齡組別區分三組)和氣溫的差異,對於塑膠瓶容量數的偏好是否有所差異。3.以生產區域劃分為台灣區與東南亞區,進而探討較容易受到氣溫與景氣影響生產量(營業績效)的區域為何。
本研究透過SPSS線性迴歸實證分析,實證結果顯示:1.台灣與東南亞區域整體,飲料塑膠瓶皆會隨著氣溫變化而影響生產銷售量。其中,越南相較於其他東南亞國家,由於地形全境呈狹長S型,氣溫又受地形的影響,故其塑膠瓶生產量較易受氣溫變化影響,呈現正相關關係。此外,藉由經濟層面分析結果,泰國塑膠瓶生產量與GDP和勞動人口總數呈現正相關;印尼、越南和馬來西亞PET瓶生產量與GDP無相關,但與勞動人口總數有負向關係,主要原因在於東南亞區中泰國經濟自2014-2017年是呈現持續穩定上漲;但印尼、越南與馬來西亞呈現動盪不安狀況。2.台灣地區不論大容量、中容量或小容量之塑膠瓶生產量皆會隨著氣溫上升而提高產量;但大容量(1000ml以上)瓶型季生產量的變動與經濟變數(GDP和勞動人口數)則是呈現負相關。東南亞區域,泰國飲料塑膠瓶200ml和400ml系列生產量變化分別與GDP和勞動人口總數有著正向的影響。印尼350ml與1000ml、越南區350ml和馬來西亞500ml之塑膠瓶生產量與GDP變化無關;但與勞動人口總數呈現負相關。3.相較於東南亞地區,台灣塑膠瓶生產量較容易受到氣溫的影響,且為正相關。而勞動人口總數與人口年齡差異為影響東南亞區飲料塑膠瓶生產量的主要因素,因各國經濟與偏好不同而有不同程度的關聯。

In the global economic era, the prosperity of a country is intertwined with international economic issues, Financial crisis of 2008 and the European debt crisis of 2011, for example, have severely impacted global economic development and financial market. Taiwanese export volume declined sharply due to these crises and the depression also influenced the sales and revenue of Taiwanese industries. The production of PET bottles used in the beverage industry has also been affected significantly because of economic liberalization and information revolution. Therefore it is hard for Taiwanese traditional manufacturers to gain advantage with lower cost in the red ocean market. In order to lower the cost, many Taiwanese companies start to move to developing countries, such as China and S.E.A. countries. In order to face the uncertainty in the international economy and the highly competitive market environment, Taiwanese companies need to predict effectively and precisely what the key factors are to affect industry costs and revenue, and thus provides a solution for Taiwanese companies to escape from the shackles of the red ocean.
By taking a beverage packing corporation in central Taiwan for example, this study explores how external environmental factors affect the production of beverage PET bottles from a macroeconomic point of view. Temperature, on the other hand, can also be seen as one of the key factors to affect the sales volume of beverages. The purpose of this study is to 1) research if the production of PET bottle is related with temperature and economic indicators; 2) compare macroeconomic indicators and temperature between Taiwan and Southeast Asia countries in order to see whether those indicators affect the preference for PET bottles of a different size. And 3) further explore the sales volume of which the above-mentioned areas is easier to be influenced by temperature and economic factors.
The analysis is examined by linear-regression and the result shows that 1) both the sales volumes of PET bottle in Taiwan and S.E.A. area are affected by temperature, which has a positive correlation on Vietnam among S.E.A. countries as the shape of Vietnam is sinuous and serpentine, snaking down Indochina. Besides, GDP and labor force population are positive correlated with the production of the PET bottles in Thailand. 2) Regardless of the size of the PET bottles, the production of PET bottles in Taiwan is increased as temperature rises. GDP and labor population, however, have a negative correlation on the production of large capacity PET bottles. In S.E.A. areas, the production of both 200ml and 400ml bottle is correlated positively by GDP and labor force population. 3) Comparing to S.E.A. countries, Taiwan is easier to be affected by seasonal changes in terms of the production of PET bottle, whereas in S.E.A. areas, labor force and age difference are the key factors.
URI: http://hdl.handle.net/11455/98256
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-14起公開。
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-5105029011-1.pdf1.35 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.