Please use this identifier to cite or link to this item:
標題: 以鼓膜隔艙壓力試驗法探討次微米鈦鎳合金薄膜之 機械行為
Using Bulge test for the Mechanical Behavior Study of Submicrometer TiNi Alloy Thin Films
作者: 曾德宇
Te-Yu Tseng
關鍵字: 鈦鎳合金;形狀記憶合金;鼓膜隔艙試驗;機械性質;殘留應力;熱處理;循環測試;TiNi Alloy;SMA;bulge test;mechanical properties;residual stress;heat treatment;fatigue
引用: [1] J. A. Walker, K. J. Gabriel, and M. Mehregany, 'Thin-film processing of TiNi shape memory alloy,' Sensors and Actuators A: Physical, vol. 21, no. 1, pp. 243-246, 1990/02/01/ 1990. [2] K. Kuribayashi, M. Yoshitake, and S. Ogawa, 'Reversible SMA actuator for micron sized robot,' in Micro Electro Mechanical Systems, 1990. Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE, 1990, pp. 217-221: IEEE. [3] W. L. Benard, H. Kahn, A. H. Heuer, and M. A. Huff, 'Thin-film shape-memory alloy actuated micropumps,' Journal of Microelectromechanical Systems, vol. 7, no. 2, pp. 245-251, 1998. [4] A. D. Johnson and C. A. Ray, 'Shape memory alloy film actuated microvalve,' ed: Google Patents, 1994. [5] M. Kohl, B. Krevet, and E. Just, 'SMA microgripper system,' Sensors and Actuators A: Physical, vol. 97, pp. 646-652, 2002. [6] B. Sutapun, M. Tabib-Azar, and M. A. Huff, 'Applications of shape memory alloys in optics,' Applied optics, vol. 37, no. 28, pp. 6811-6815, 1998. [7] A. D. Johnson and E. J. Shahoian, 'Recent progress in thin film shape memory microactuators,' in Micro Electro Mechanical Systems, 1995, MEMS'95, Proceedings. IEEE, 1995, p. 216: IEEE. [8] Y. Fu, H. Du, W. Huang, S. Zhang, and M. Hu, 'TiNi-based thin films in MEMS applications: a review,' Sensors and Actuators A: Physical, vol. 112, no. 2-3, pp. 395-408, 2004. [9] P. Krulevitch, A. P. Lee, P. B. Ramsey, J. C. Trevino, J. Hamilton, and M. A. Northrup, 'Thin film shape memory alloy microactuators,' Journal of Microelectromechanical Systems, vol. 5, no. 4, pp. 270-282, 1996. [10] J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, 'A review of shape memory alloy research, applications and opportunities,' Materials & Design (1980-2015), vol. 56, pp. 1078-1113, 2014. [11] S. Lederlé, 'Issues in the design of shape memory alloy actuators,' Massachusetts Institute of Technology, 2002. [12] I. W. Hunter, J. M. Hollerbach, and J. Ballantyne, 'A comparative analysis of actuator technologies for robotics,' Robotics Review, vol. 2, pp. 299-342, 1991. [13] Y. Tadesse, 'Electroactive polymer and shape memory alloy actuators in biomimetics and humanoids,' in Electroactive Polymer Actuators and Devices (EAPAD) 2013, 2013, vol. 8687, p. 868709: International Society for Optics and Photonics. [14] S.-M. Kirsch and F. Welsch, Robot-mounted vacuum grippers flex their artificial muscles. 2018. [15] N. Morgan, 'Medical shape memory alloy applications—the market and its products,' Materials Science and Engineering: A, vol. 378, no. 1-2, pp. 16-23, 2004. [16] D. S. Grummon, J. Zhang, and T. J. Pence, 'Relaxation and recovery of extrinsic stress in sputtered titanium–nickel thin films on (100)-Si,' Materials Science and Engineering: A, vol. 273, pp. 722-726, 1999. [17] P. Clayton, 'Tribological behavior of a titanium-nickel alloy,' Wear, vol. 162, pp. 202-210, 1993. [18] R. Richman, A. Rao, and D. Kung, 'Cavitation erosion of NiTi explosively welded to steel,' Wear, vol. 181, pp. 80-85, 1995. [19] C. Craciunescu, J. Li, and M. Wuttig, 'Thermoelastic stress-induced thin film martensites,' Scripta materialia, vol. 48, no. 1, pp. 65-70, 2003. [20] R. Abbaschian and R. E. Reed-Hill, Physical metallurgy principles. Cengage Learning, 2008. [21] S. Chakravorty and C. Wayman, 'The thermoelastic martensitic transformation inβ′ Ni-Al alloys: I. Crystallography and morphology,' Metallurgical transactions A, vol. 7, no. 4, pp. 555-568, 1976. [22] D. C. Lagoudas, 'Shape memory alloys,' Science and Business Media, LLC, 2008. [23] D. C. Lagoudas, Shape memory alloys: modeling and engineering applications. Springer Science & Business Media, 2008. [24] K. Otsuka and X. Ren, 'Recent developments in the research of shape memory alloys,' Intermetallics, vol. 7, no. 5, pp. 511-528, 1999. [25] T. H. Nam, T. Saburi, and K. i. Shimizu, 'Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys,' Materials Transactions, JIM, vol. 31, no. 11, pp. 959-967, 1990. [26] C. M. Wayman and J. D. Harrison, 'The origins of the shape memory effect,' Jom, vol. 41, no. 9, pp. 26-28, 1989. [27] W. J. Buehler, J. Gilfrich, and R. Wiley, 'Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi,' Journal of applied physics, vol. 34, no. 5, pp. 1475-1477, 1963. [28] C. Ma, R. Wang, Q. Sun, Y. Zohar, and M. Wong, 'Frequency response of TiNi shape memory alloy thin film micro-actuators,' in Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, 2000, pp. 370-374: IEEE. [29] Y. Nakamura, S. Nakamura, L. Buchaillot, and H. Fujita, 'A three-dimensional shape memory alloy loop actuator,' in Micro Electro Mechanical Systems, 1997. MEMS'97, Proceedings, IEEE., Tenth Annual International Workshop on, 1997, pp. 262-266: IEEE. [30] T. B. Massalski, 'Binally Alloy Phase Diagrams,' American society for metals, 1986. [31] W. Tang, 'Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys,' Metallurgical and materials transactions A, vol. 28, no. 3, pp. 537-544, 1997. [32] Y. Fu, H. Du, and S. Zhang, 'Sputtering deposited TiNi films: relationship among processing, stress evolution and phase transformation behaviors,' Surface and Coatings Technology, vol. 167, no. 2-3, pp. 120-128, 2003. [33] S. Takeuchi and I. Shimoyama, 'Three dimensional SMA microelectrodes with clipping structure for insect neural recording,' in Micro Electro Mechanical Systems, 1999. MEMS'99. Twelfth IEEE International Conference on, 1999, pp. 464-469: IEEE. [34] T. W. Duerig, K. Melton, and D. Stöckel, Engineering aspects of shape memory alloys. Butterworth-Heinemann, 2013. [35] K. Otsuka and X. Ren, 'Physical metallurgy of Ti–Ni-based shape memory alloys,' Progress in materials science, vol. 50, no. 5, pp. 511-678, 2005. [36] Z.-r. He, F. Wang, Y.-s. Wang, P.-j. Xia, and B. Yang, 'Effects of V and Cr on transformation and deformation characteristics of Ti-Ni superelastic alloy,' ACTA METALLURGICA SINICA-CHINESE EDITION-, vol. 43, no. 12, p. 1293, 2007. [37] H. Hosoda, S. Hanada, K. Inoue, T. Fukui, Y. Mishima, and T. Suzuki, 'Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions,' Intermetallics, vol. 6, no. 4, pp. 291-301, 1998. [38] S. Hsieh, S. Chen, H. Lin, M. Lin, J. Huang, and M. Lin, 'A study of TiNiCr ternary shape memory alloys,' Journal of Alloys and Compounds, vol. 494, no. 1-2, pp. 155-160, 2010. [39] J. Uchil, K. G. Kumara, and K. Mahesh, 'Effects of heat treatment temperature and thermal cycling on phase transformations in Ni–Ti–Cr alloy,' Journal of alloys and compounds, vol. 325, no. 1-2, pp. 210-214, 2001. [40] J. Y. Choi and S. Nemat-Nasser, 'Effect of annealing and initial temperature on mechanical response of a Ni–Ti–Cr shape-memory alloy,' Materials Science and Engineering: A, vol. 432, no. 1-2, pp. 100-107, 2006. [41] S. Miyazaki and A. Ishida, 'Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films,' Materials Science and Engineering: A, vol. 273, pp. 106-133, 1999. [42] Y. Fu, H. Du, and S. Zhang, 'Curvature method as a tool for shape memory effect,' in Surface Engineering: Science and Technology II Symposium at TMS 2002 Annual Meeting, TMS, Seattle, WA, USA, 2002, pp. 17-21. [43] H. Hencky, 'Uber den Spannungszustand in kreisrunden Platten mit verschwindender Biegungssteifigkeit,' Zeitschrift fur Mathematik und Physik, vol. 63, pp. 311-317, 1915. [44] J. Vlassak and W. Nix, 'A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films,' Journal of Materials Research, vol. 7, no. 12, pp. 3242-3249, 1992. [45] M. K. Small and W. Nix, 'Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films,' Journal of Materials Research, vol. 7, no. 6, pp. 1553-1563, 1992. [46] S. P. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells. McGraw-hill, 1959. [47] J. Beams, 'Mechanical properties of thin films of gold and silver,' Structure and properties of thin films, pp. 183-192, 1959. [48] T. Tsakalakos, 'The bulge test: a comparison of the theory and experiment for isotropic and anisotropic films,' Thin solid films, vol. 75, no. 3, pp. 293-305, 1981. [49] H. Itozaki, 'Mechanical properties of composition modulated copper-palladium foils,' 1983. [50] R. Pratt and G. Johnson, 'Mechanical characterization of thin films using full-field measurement of diaphragm deflection,' MRS Online Proceedings Library Archive, vol. 308, 1993. [51] M. Orthner, L. Rieth, and F. Solzbacher, 'High speed wafer scale bulge testing for the determination of thin film mechanical properties,' Review of Scientific Instruments, vol. 81, no. 5, p. 055111, 2010. [52] O. Tabata, K. Kawahata, S. Sugiyama, and I. Igarashi, 'Mechanical property measurements of thin films using load-deflection of composite rectangular membranes,' Sensors and actuators, vol. 20, no. 1-2, pp. 135-141, 1989. [53] J. Y. Pan, P. Lin, F. Maseeh, and S. D. Senturia, 'Verification of FEM analysis of load-deflection methods for measuring mechanical properties of thin films,' in Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, 1990, pp. 70-73: IEEE. [54] D. Maier-Schneider, J. Maibach, and E. Obermeier, 'A new analytical solution for the load-deflection of square membranes,' Journal of microelectromechanical systems, vol. 4, no. 4, pp. 238-241, 1995. [55] E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, 'Two interferometric methods for the mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,' Journal of Materials Research, vol. 12, no. 9, pp. 2234-2248, 1997. [56] H. Youssef, A. Ferrand, P. Pons, and R. Plana, 'Iterative algorithm with finite element method for bulge test characterization,' 2009: MME. [57] W. Sauter, 'Thin Film Mechanics Bulging and Stretching,' Citeseer, 2000. [58] B. Merle, 'Mechanical properties of thin films studied by bulge testing,' 2013. [59] B. Merle and M. Göken, 'Bulge fatigue testing of freestanding and supported gold films,' Journal of Materials Research, vol. 29, no. 2, pp. 267-276, 2014. [60] J.-S. Wang, C.-C. Hsieh, C.-M. Lin, E.-C. Chen, C.-W. Kuo, and W. Wu, 'The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy,' Materials Science and Engineering: A, vol. 605, pp. 98-107, 2014. [61] Y. Fu, H. Du, S. Zhang, and W. Huang, 'XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate,' Materials Science and Engineering: A, vol. 403, no. 1-2, pp. 25-31, 2005. [62] T. Lehnert, S. Crevoiserat, and R. Gotthardt, 'Transformation properties and microstructure of sputter-deposited Ni-Ti shape memory alloy thin films,' Journal of materials science, vol. 37, no. 8, pp. 1523-1533, 2002. [63] P. Surbled, C. Clerc, B. Le Pioufle, M. Ataka, and H. Fujita, 'Effect of the composition and thermal annealing on the transformation temperatures of sputtered TiNi shape memory alloy thin films,' Thin Solid Films, vol. 401, no. 1-2, pp. 52-59, 2001. [64] S. Kwofie, 'Plasticity model for simulation, description and evaluation of vibratory stress relief,' Materials Science and Engineering: A, vol. 516, no. 1-2, pp. 154-161, 2009.
本研究利用鼓膜隔艙壓力試驗法(Bulge Test)來探討TiNi形狀記憶合金薄膜在濺鍍後不同熱處理條件下的機械性質與殘留應力,並以循環測試顯示TiNi薄膜之抗疲勞性,再藉由SEM和XRD觀察微結構與結晶相的變化與機械性質之間的關係。由SEM與XRD分析結果中可看出隨退火溫度增加,在大氣環境下退火的TiNi薄膜表面之Ti原子易與氧形成TiO2之脆性層,而在高真空及+N2環境下退火則能有效避免TiNi薄膜表面氧化,其中高真空環境的效果最好,且呈現出的結晶化程度明顯優於其它條件。在鼓膜實驗結果可得在退火溫度430度、500度和600度下,隨著溫度上升,殘留應力明顯下降,而楊氏係數隨著溫度上升而增加,由SEM與XRD分析的結果可判斷隨著退火溫度增加,使得表面TiO2與Ti3Ni4等析出相的形成,且R相引入沃斯田體母相,導致TiNi薄膜之楊氏係數增加。且在循環測試可看出循環後釋放的殘留應力隨著退火溫度上升而減少,由XRD分析FWHM變化,可判斷TiNi薄膜處於疲勞第一階段,顯示TiNi薄膜具有良好的抗疲勞性。

In this study, the Bulge Test was used to investigate the mechanical properties and residual stress of TiNi shape memory alloy film under different post-annealing temperature. The fatigue test showed the fatigue resistance of TiNi film. The relationship between the change of the microstructure and the crystalline phase and the mechanical properties was observed by SEM and XRD. From the results of SEM and XRD analysis, we can observe that as the annealing temperature increases, the Ti atoms on the surface of the TiNi film annealed in the atmosphere easily form a brittle layer of TiO2 with oxygen, while annealing under high vacuum and in N2 environment can effectively avoid the surface of the TiNi film oxidized, and the condition under high vacuum environment had the best effect, and the degree of crystallization is obviously superior to other conditions. In the results of the bulge test. We can find that as the annealed temperature increase, the residual stress decreases obviously, and the Young's modulus increases. The results of SEM and XRD analysis can determine that the formation of precipitates such as TiO2 and Ti3Ni4 on the surface as the annealing temperature increases. The R phase was introduced into the austenite matrix, which leads to an increase in the Young's modulus of the TiNi film. In the fatigue test, the residual stress released after fatigue decreases as the annealing temperature increases. The FWHM changes are analyzed by XRD, and the TiNi film is judged to be at The first stage of fatigue shows good fatigue resistance.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:精密工程研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105067039-1.pdf4.55 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.