Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98395
標題: 提升發光閘流體光萃取效率之研究
Study on Light Extraction Efficiency of Light-Emitting Thyristor
作者: 詹家甄
Jia-Jhen Jhan
關鍵字: 閘流體;電流擴散;布拉格反射鏡;磷化鎵;thyristor;current spreading;distributed bragg reflector;gallium phosphide
引用: [1] '突破LED瓶頸的新一代列印技術:S-LED', http://www.fujixerox.com.tw/. [2] Chong-Yi Lee, Meng-Chyi Wu, Wei Lin, 'The influence of window layers on the performance of 650 nm AlGaInP/GaInP multi-quantum-well light-emitting diodes,' J. Crystal Growth, vol. 200,p. 382, 1999. [3] T. Gessmann et al. 'Omnidirectional Reflective Contacts for Light-Emitting Diodes,"IEEE electron device letters, Vol.24, No.10, 2003. [4] 林天送, '影印機與雷射印表機的發明', 科學發展,66-69頁,465期,2011年。 [5] '第四章 雷射印表機',PIDA,2004年。 [6] 謝樹崢 黃金龍,'雷射印表機(二)',光電科技資料叢書之二十五,1993年。 [7] 郭耿誌,'發光二極體列印頭驅動電路之設計',碩士論文,國立交通大學電子工程學系電子研究所碩士班,2003年。 [8] '雷射印表機工作原理' ,http://blog.xproda.com/2010/05/blog-post_28.html. [9] K. Tateishi and Y. Hoshino, 'Electrophotographic Printer Using LED Array' , IEEE Transactions on Industry Applications, Vol. IA-19, No. 2, pp. 169-172, 1983. [10] 安孫子一松,'LEDプリントヘッド開発の話',沖テクニカルレビューVol.70, No.2,2003年。 [11] M. Ogihara, H. Fujiwara, M. Mutoh, T. Suzuki, T. Igari, T. Sagimori, H. Kurokawa, T. Kaneto, H. Furuta, I. Abiko, and M. Sakuta, 'LED Array Integrated With Si Driving Circuits for LED Printer Printhead', Electronics Letter, Vol. 42, No. 15, pp. 881-883, 2006. [12] S. Ohno, Y. Kusuda, N. Komaba, Y. Kuroda, K. Yamashita, and S. Tanaka, 'Two-Phase Drive Self-Scanning Light-Emitting Device (SLED) Using Coupling Diodes', Jpn. J. Appl. Phys., Vol. 30, No. 3A, pp. L380-L382, 1991. [13] Y. Kusuda, K. Tone, S. Tanaka, and K. Yamashita, 'Self-Scanning Light-Emitting Device (SLED) Using pnpn Thyristor Structure', Jpn. J. Appl. Phys., Vol. 31, No. 5A, pp. 1280-1286, 1992. [14] 鍾懷谷,'優化研發階段之可靠度管理導入新產品LED印表機光學頭之應用', 碩士論文,國立成功大學工學院工程管理碩士在職專班,2004年。 [15] 歐文雄,歐家駿,'工業電子學',第三版,全華圖書股份有限公司,2012年。 [16] K. Hara, K. Kojima, K. Mithunaga, and K. Kyuma, 'Differential Optical Switching at Subnonowatt Input Power', IEEE Photonics Technology Letters, Vol. 1, No. 11, pp. 370-372, 1989. [17] W. K. Choi, D. G. Kim, Y. T. Moon, Y. W. Choi, Y. K. kim, Kent D. Choquette, S. Lee, and D. H. Woo, 'Optical Properties of Selectively Oxidized Vertical Cavity Laser with Depleted Optical Thyristor Structure', Applied Physics Letters, Vol. 89, pp. 121117, 2006. [18] 余合興,'半導體材料與元件',再版,中央圖書供應社,1990年。 [19] Donald A. Neamen, 'Fundamentals of Semiconductor Physics and Devices', 2nd edition, McGraw-Hill, 2012. [20] 施敏,李明逵,'半導體元件物理與製作技術',第三版,曾俊元譯,國立交通大學出版社,2013年。 [21] 周耕宇,'橫向式超接面閘流體過壓保護元件的設計與研究',碩士論文,國立清華大學電子工程研究所碩士班,2008年。 [22] C. H. B. Thompson, 'Physics of Semiconductor Laser Devices', John Wiley and Sons, 1980. [23] 陳明權,'藍光發光二極體不同量子井厚度的內部量子效率之研究',碩士論文,國立交通大學電機學院電子與光電學程碩士班,2008年。 [24] 史光國,'半導體發光二極體及固態照明',初版,全華圖書股份有限公司,2005年。 [25] S. O. Kasap,'光電半導體元件',黃俊達等譯,全威圖書有限公司,2006年。 [26] Dieter K. Schroder,'Semiconductor Material and Device Characterization', 3rd edition, John Wiley and Sons, 2006. [27] K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, 'Ohmic Contacts to n-type Germanium with Low Specific Contact Resistivity', Applied Physics Letters, Vol. 100, pp. 022113-3, 2012. [28] D. A. Stocker, I. D. Goepfert, E. F. Schubert, K. S. Boutros, and J. M. Redwing, 'Crystallographic Wet Chemical Etching of p-type GaN', Journal of the Electrochemical Society, vol. 147, pp. 763-764, 2000. [29] 郭浩中,賴芳儀,郭守義,'LED原理與應用',第三版,五南圖書出版股份有限公司,2013年。
摘要: 
本實驗將布拉格反射鏡(DBR)及磷化鎵(GaP)應用在發光閘流體元件上,藉此提升傳統發光閘流體元件的特性。為了探討布拉格反射鏡及磷化鎵對光電特性造成的影響,本研究製作了發光閘流體只具有DBR或GaP的元件及同時具有DBR及GaP的元件。
在電特性方面,發光閘流體單獨具有DBR、GaP的元件及同時具有DBR及GaP的元件的I-V特性量測結果均呈現閘流體元件特有的S形曲線,藉由磷化鎵的電流擴散的特性改善發光閘流體元件的光電特性,解決熱能過於集中在金屬電極下方的問題,為了進一步提升光輸出功率,原先會被GaAs基板吸收的光可利用底層磊上布拉格反射鏡,將光反射回出光面,因此提升光萃取效率。
本實驗同時具有DBR及GaP的閘流體元件相較單獨具有DBR及GaP的元件在光輸出功率上提升47.34及68.84%,其在外部量子效率上提升47.19及30.31%,則在光萃取效率上提升47.17及30.25%,由實驗得知藉由布拉格反射鏡及磷化鎵之結構設計來提升電流擴散能力及光輸出功率及光萃取效率。

In this research, distributed bragg reflector (DBR) and gallium phosphide (GaP) were applied to the light-emitting thyristor, thereby enhancing the characteristics of the conventional light-emitting thyristor. In order to investigate the effects of DBR and GaP on the photoelectric properties, the different kinds of devices were fabricated. One is light-emitting thyristor with DBR, another is with GaP epilayer, and the other is the integration of thyristor with both of GaP and DBR structure.
Notably, all of the different structures of devices exhibit the unique S-shape curve, which means they are succeeded to fabricate into thyristors. The material GaP would make the current spread in thyristor uniformly, and thus improve the photoelectric characteristics of the light-emitting thyristor. In addition, the GaP epilayer would prevent the current crowding effect and thus mitigate the heating accumulation in light-emitting thyristor. Also, to enhance the properties of light-emitting thyristor output power, the light-emitting thyristor with DBR structure had been utilized in this study. This way could reflect the emitted light back to the surface and prevent the light from absorbing from GaAs substrate. The results show that it would improve the light extraction efficiency.
When comparing the thyristor with both of DBR and GaP structure, with DBR, and with GaP only, respectively. The results show that the output power increases 47.34% and 68.84%, and EQE increases 47.19% and 30.31%, and LEE increases 47.17and 30.25%, respectively. According to the afore mentioned, the light-emitting thyristor with both of DBR and GaP structure would enhance the possibility of current spreading, output power, and EQE.
URI: http://hdl.handle.net/11455/98395
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-31起公開。
Appears in Collections:精密工程研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105067024-1.pdf2.43 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.