Please use this identifier to cite or link to this item:
標題: 溶劑揮發對二次沉積溶液法製備鈣鈦礦太陽能電池之研究
The study of solvent evaporation on sequential deposition process for perovskite solar cells
作者: 王建驊
Jian-Hua Wang
關鍵字: 真空輔助處理;溶劑揮發;二次沉積法;vacuum-assisted process;solvent evaporation;sequential deposition
引用: 參考文獻 [1] H. Zhou et al., 'Photovoltaics. Interface engineering of highly efficient perovskite solar cells,' Science, vol. 345, no. 6196, pp. 542-6, Aug 1 2014. [2] J. H. Heo et al., 'Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,' Nature Photonics, vol. 7, no. 6, pp. 486-491, 2013. [3] '<2015_High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.pdf>.' [4] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, 'Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells,' Advanced Functional Materials, vol. 24, no. 1, pp. 151-157, 2014. [5] T. Liu et al., 'Mesoporous PbI2 Scaffold for High-Performance Planar Heterojunction Perovskite Solar Cells,' Advanced Energy Materials, vol. 6, no. 3, p. 1501890, 2016. [6] I. Repins et al., '19·9%-efficient ZnO/CdS/CuInGaSe2solar cell with 81·2% fill factor,' Progress in Photovoltaics: Research and Applications, vol. 16, no. 3, pp. 235-239, 2008. [7] J. Britt and C. Ferekides, 'Thin‐film CdS/CdTe solar cell with 15.8% efficiency,' Applied Physics Letters, vol. 62, no. 22, pp. 2851-2852, 1993. [8] '<光連雙月刊2014年5月‧No. 111 .pdf>.' [9] '<A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.pdf>.' [10] H. S. Kim et al., 'Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,' Sci Rep, vol. 2, p. 591, 2012. [11] Q. Chen et al., 'Planar heterojunction perovskite solar cells via vapor-assisted solution process,' J Am Chem Soc, vol. 136, no. 2, pp. 622-5, Jan 15 2014. [12] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, 'Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells,' Nat Mater, vol. 13, no. 9, pp. 897-903, Sep 2014. [13] J. Burschka et al., 'Sequential deposition as a route to high-performance perovskite-sensitized solar cells,' Nature, vol. 499, no. 7458, pp. 316-9, Jul 18 2013. [14] Y. Wu et al., 'Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition,' Energy Environ. Sci., vol. 7, no. 9, pp. 2934-2938, 2014. [15] S.-Y. Kim, H. J. Jo, S.-J. Sung, and D.-H. Kim, 'Perspective: Understanding of ripening growth model for minimum residual PbI2 and its limitation in the planar perovskite solar cells,' APL Materials, vol. 4, no. 10, p. 100901, 2016. [16] Y. Fu et al., 'Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,' J Am Chem Soc, vol. 137, no. 17, pp. 5810-8, May 6 2015. [17] X. Li et al., 'A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells,' Science, 2016-06-09 00:00:00 2016. [18] J. W. Lee, H. S. Kim, and N. G. Park, 'Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells,' Acc Chem Res, vol. 49, no. 2, pp. 311-9, Feb 16 2016. [19] S. Kim et al., 'Improved performance and thermal stability of perovskite solar cells prepared via a modified sequential deposition process,' Organic Electronics, vol. 41, pp. 266-273, 2017. [20] J. Liu et al., 'Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell,' ACS Appl Mater Interfaces, vol. 7, no. 43, pp. 24008-15, Nov 4 2015.
有機-無機鈣鈦礦太陽能電池(Perovskite solar cell, PSCs)被認為是下個世代太陽能電池最有潛力的吸光材料之一,因為其幾年內的快速進展即使轉換效率從一開始的3.8%到現在超過20%。然而,鈣鈦礦層的製備過程中,溶劑(DMSO、DMF、IPA等)揮發與鈣鈦礦薄膜的品質密切相關,且關鍵性的影響元件所獲得的轉換效率。因此,本論文透過自製真空設備的開發將其應用於控制CH3NH3PbI3鈣鈦礦薄膜在兩步驟溶液沉積期間的溶劑蒸發,以及透過材料成核與生長關係來調整鈣鈦礦的成核和晶粒生長過程。論文實驗部分主要可分為三部分,第一部分為透過不同的實驗參數,如調整旋塗轉速、時間等,以獲得鈣鈦礦層的生長情況的瞭解和最佳的實驗參數。第二部分主要為真空輔助溶液處理(VAP)作用於PbI2膜上的變化,藉由調控真空輔助裝置的壓力和處理時間,以提升薄膜覆蓋率,並透過以不同的前驅溶劑比例的混合並配合真空輔助儀器,了解其對所製備的鈣鈦礦膜性質影響。第三部分為使用真空輔助溶液處理(VAP)作用於CH3NH3I膜,並比較分別將VAP作用於PbI2與CH3NH3I膜上的差異及優劣性。論文最後,透過於AM 1.5G條件下測試,製作成鈣鈦礦太陽能電池以比較不同鈣鈦薄膜處理下其光電轉換效率的差異。

The organic-inorganic perovskite solar cell (PSCs) is considered one of the most promising candidates for the next generation photovoltaic device because of its fast progress of the conversion efficiency over 20%. However, the behavior of evaporated solvents (DMSO, DMF, IPA and so forth) during the perovskite film formation can be strongly correlated with the quality of the resulting perovskite film, playing a crucial role in repeatedly obtaining the good device performance. Accordingly, the homemade facility is developed for controlling the solvent evaporation during the sequential CH3NH3PbI3 perovskite deposition.
Our work in this thesis can be mainly divided into three parts. In the first part, the basic study of sequential perovskite film growth is conducted through different process parameters in order to obtain the optimized film quality. In the second part, the as-coated PbI2 is treated with vacuum-assisted process (VAP) by our developed facility. Our result shows that the PbI2 film quality can be tuned by using the different time and pressure during the VAP, and thereby affect the perovskite morphology. The different ratio of DMSO to DMF is also used in order to understand the solvent effect. In the third part, the VAP is applied to as-coated CH3NH3I in order to further understand the role of VAP played during the sequential perovskite deposition process.
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-30起公開。
Appears in Collections:精密工程研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105067032-1.pdf3.39 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.