Please use this identifier to cite or link to this item:
標題: 可攜式低濃度丙酮感測系統
Portable Low Concentration Acetone Gas Sensing System
作者: 郭宗瑋
Tsung-Wei Kuo
關鍵字: 丙酮感測系統;CMOS-MEMS;三氧化鎢;薄膜穩定性;Resistive type sensor;CMOS-MEMS;Tungsten trioxide;Stability of the film
引用: [1]T. Nakanishi, N. Mitsuhira, M. Hisada, A. Nagami, M. Hashimoto, K. Hanafusa and N. Okumura, 'Breath-holding and its breakpoint,' Experimental Physiology, Vol. 91, pp. 1-15, 2005. [2]N. T. Brannelly, J. P. Hamilton-Shield, A. J. Killard, 'The measurement of a mmonia in human breath and its potential in clinical diagnostics,' Critical Reviews in Analytical Chemistry, Vol. 46, pp. 490-501, 2016. [3]C. Deng, J. Zhang, X. F. Yu, W. Zhang and X. M. Zhang, 'Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization,' Journal of Chromatography B, Vol. 810, pp. 269-275, 2004. [4] [5] [6] [7]M. Roth, R. Hartinger, R. Faul, H. E. Endres, 'Drift reduction of organic coted gas-sensors by temperature modulation,' Sensors and Actuators B: Chemical, Vol. 36, pp. 358-362, 1996. [8]H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zaden, 'Nanostructured tungsten oxide-properties, synthesis, and applications,' Advanced Functional Material, Vol. 21, pp. 2175-2196, 2011. [9]E. Brauns, W. Lang, E. Morsbach, G. Schnurpfeil, M. Baumer, 'A nanoparticles based catalytic gas sensor with improved stability,' Proceedings of IEEE Sensors, 2012. [10]A. Kumar, S. Keshri, D. Kabiraj, 'Influence of annealing temperature on nanostructured thin films of tungsten trioxide,' Materials Science in Semiconductor Processing, Vol. 17, pp. 43-52, 2014. [11]G. Korotcenko V, B. K. Cho, 'Engineering approaches to improvement of conductometric gas sensor parameters. Part 2: decrease of dissipated (consumable) power and improvement stability and reliability,' Sensors and Actuators B: Chemical, Vol. 198, pp. 316-341, 2014. [12]M. Poloju, N. jayababu, M. V. Ramana Reddy, 'Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor,' Materials Science and Engineering: B, Vol. 227, pp. 61-67, 2018. [13]L. de Angelis, R. Riva, 'Selectivity and stability of a tin dioxide sensor for methane,' Sensors and Actuators B: Chemical, Vol. 28, pp. 25-29, 1995. [14]C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, 'Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization,' Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, Vol. 810, pp. 269-275, 2004. [15]C. Wang, A. Mbi. M. Shepherd, 'A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C,' IEEE Sensors Journal, Vol. 10, pp. 54-63, 2010. [16]H. J. Pandya, S. Chandra, A. L. Vyas, 'Nanostructured ito thin films by RF sputtering for acetone sensor,' International Journal of Nanoscience, Vol. 10, pp. 271-274, 2011. [17]S. Liu, F. Zhang, H. Li, T. Chen, Y. Wang, 'Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template,' Sensors and Actuators B: Chemical, Vol. 162, pp. 259.268, 2012. [18]M. M. Rahman, S. Bahadar Khan, A. Jamal, M. Faisal, A. M. Asiri, 'Fabrication of highly sensitive acetone sensor based on sonochemically prepared as-grown Ag2O nanostructures,' Chemical Engineering Journal, Vol. 192, pp. 122-128, 2012. [19]T. Hyodo, T. Kaino, T. Ueda, K. Izawa, Y. Shimizu, 'Acetone-sensing properties of WO_3-based gas sensors operated in dynamic temperature modulation mode–effects of loading of noble metal and/or NiO onto WO_3,' Sensors and Materials, Vol. 28, pp. 1179-1189, 2016. [20]J. Y. Shen, L. Zhang, J. Ren, J. C. Wang, H. C. Yao, Z. J. Li, 'Highly enhanced acetone sensing performance of porous C-doped WO_3 hollow spheres by carbon spheres as templates,' Sensors and Actuators B: Chemical, Vol. 239, pp. 597-607, 2017. [21]H. C. Hsu, C. L. Dai, 'Design and fabrication of portable acetone sensors,' NCHU Master's Graduation Thesis, 2017. [22]W. T. Chang, Y. Liang, 'Geometric design of microbolometers made from CMOS polycrystalline silicon,' IEEE Sensors Journal, Vol. 15, pp. 264-268, 2015. [23]C. Wang, J. Jin, Y. Li, W. Ding, M. Dai, 'Design and fabrication of a mems-based gas sensor containing WO_3 sensitive layer for detection of NO2,' Journal of Micro/Nanolithography MEMS and MOEMS, Vol. 16, 2017. [24]T. Kudo, H. Okamoto, Y. Sasaki, 'Peroxopolytungstic acids synthesized by direct reaction of tungsten carbide with hydrogen peroxide,' Inorganica Chimica Acta, Vol. 111, pp. 27-28, 1986. [25]I. Jimenez, J. Arbiol, A. Cornet, J. R. Morante, 'Structural and gas-sensing properties of WO_3 nanocrystalline powders obtained by a sol-gel method from tungstic acid,' IEEE Sensors Journal, Vol. 2, pp. 329-335, 2002. [26]W. H. Zheng, C. L. Dai, 'Fabrication of tungsten trioxide low concentration acetone sensors,' NCHU Master's Graduation Thesis, pp. 22-31, 2015. [27]K. H. Kim, S. A. Jahan, E. Kabir, 'A review of breath analysis for diagnosis of human health,' TrAC – Trends in Analytical Chemistry, Vol. 33, pp. 1-8, 2012. [28]S. Van den velde, F. Nevens, P. Vanhee, D. Van Steenberghe, M. Quirynen, 'GC-MS analysis of breath odor compounds in liver patients,' Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, Vol. 875, pp. 344-348, 2008. [29]W. Li, A. Sasaki, H. Oozu, K. Aoki, K. Kakushima, Y. Kataoka, A. Nishiyama, N. Sugii, H. Wakabashi, K. Tsutsui, K. Natori, H. Iwai, 'Electron transport mechanism of tungsten trioxide powder thin film studied by investigating effect of annealing on resistivity,' Microelectronics Reliability, Vol. 55, pp. 407-410, 2015.
丙酮氣體與人體健康息息相關,在本研究中已完成低濃度丙酮感測系統設計與製作,可檢測出呼氣中1 ppm上下之微量丙酮氣體。此感測系統包含顯示器模組、可攜式腔體、儲氣腔體、感測器模組。此系統運用感測器模組電阻訊號變化,判斷出環境丙酮濃度值,其解析度達0.5 ppm。系統腔體運用Solidwork建模軟體設計,並以3D印表機印製。內部電路板運用Eagle電路軟體與平面繪圖設計,並分別使用微影蝕刻標準製程及CNC雕刻機製作。感測器模組則用CMOS 0.18標準製程下線製作感測用晶片,並覆上三氧化鎢感測薄膜。本研究亦針對感測薄膜特性進行探討,對其製作參數與長期特性變化進行數據收集,運用於後端資料運算之程式修改。在系統實際測試中得平均量測誤差為17.74 %,目前可運用於檢測糖尿病患者,在未來提高準確度後,可做為血糖檢測研究之前瞻感測系統。

The acetone gas is closely related to human's health. This study has finished the design and fabrication of a portable low concentration acetone gas sensing system. It's can detect the concentration of acetone which contained inside human's breath conveniently. The system contains a monitor module, a portable chamber, an air-storage chamber, sensor module. The system can measure acetone concentration through converting the resistance changing of the sensor module into the output signal. The resolution of the sensor achieves 0.5 ppm. The chambers of the system are designed by Solidwork and made by 3D printer. The boards located inside the system are designed by Eagle software and 2D drawing software, and they are made by microlithography and CNC engraving machine. The sensor is fabricated using a CMOS 0.18 standard process. The tungsten trioxide film is covered on the sensor using positioning dispensing system. The characteristics of the tungsten trioxide film are observed in this study. We collect the data about the preparation parameters and long term changing of the sensitive film. It can use to modify the operation code of the micro controller. The average measure error percentage of the system is 17.74 % of this system. It can use to inspect the diabetes, and do research about the relation between blood glucose and the acetone concentration in the future.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:機械工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105061301-1.pdf11.72 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.