Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98438
DC FieldValueLanguage
dc.contributor蔣雅郁zh_TW
dc.contributor.author蔡筑涵zh_TW
dc.contributor.authorChu-Han Tsaien_US
dc.contributor.other機械工程學系所zh_TW
dc.date2019zh_TW
dc.date.accessioned2019-03-22T06:47:56Z-
dc.identifier.citation[1] 江國寧,'微電子系統封裝基礎理論與應用技術',滄海書局,2006. [2] Y. Huang, Z. Xiu, G. Wu, Y. Tian, P. He, X. Gu, and W. Long ,'Improving Shear Strength of Sn-3.0Ag-0.5Cu/Cu Joints and Suppressing Intermetallic Compounds Layer Growth by Adding Graphene Nanosheets,' Materials Letters, Vol. 169, pp. 262-264, 2016. [3] A. S. M. A. Hasee, M. M. Arafat, and M. R. Johan,'Stability of Molybdenum Nanoparticles in Sn–3.8Ag–0.7Cu Solder During Multiple Reflow and Their Influence on Interfacial Intermetallic Compounds,' Materials Characterization, Vol. 64, pp. 27-35, 2012. [4] S. M. L. Nai, J. Wei, M. Gupta,'Interfacial Intermetallic Growth and Shear Strength of Lead-Free Composite Solder Joints,' Journal of Alloys and Compounds, Vol. 473, no.1-2, pp. 100-106, 2009. [5] B. Guo, A. Kunwar, N. Zhao, J. Chen, Y. Wang, and H. Ma ,'Effect of Ag3Sn Nanoparticles and Temperature on Cu6Sn5 IMC Growth in Sn-xAg/Cu Solder Joints,' Materials Research Bulletin, Vol. 99, pp. 239-248, 2018. [6] A. S. M. A. Haseeb, T. S. Leng,'Effects of Co Nanoparticle Addition to Sn–3.8Ag–0.7Cu Solder on Interfacial Structure after Reflow and Ageing,' Intermetallics, Vol. 19, no.5, pp. 707-712, 2011. [7] W. Y. Chen, R. W. Song, and J. G. Duh,'Grain Structure Modification of Cu-Sn IMCs by Applying Cu-Zn UBM on Transient Liquid-Phase Bonding in Novel 3D-IC Technologies,' Intermetallics, Vol. 85, pp. 170-175, 2017. [8] S. L. Tay, A. S. M. A. Haseeb, M. R. Johan, P. R. Munroe, and M. Z. Quadir,'Influence of Ni Nanoparticle on the Morphology and Growth of Interfacial Intermetallic Compounds between Sn–3.8Ag–0.7Cu Lead-Free Solder and Copper Substrate,' Intermetallics, Vol. 33, pp. 8-15, 2013. [9] Y. Tang, G. Y. Li, and Y. C. Pan,'Influence of TiO2 Nanoparticles on IMC Growth in Sn–3.0Ag–0.5Cu–xTiO2 Solder Joints in Reflow Process,' Journal of Alloys and Compounds, Vol. 554, pp. 195-203, 2013. [10] B. L. Chen, and G. Y. Li,'Influence of Sb on IMC Growth in Sn–Ag–Cu–Sb Pb-Free Solder Joints in Reflow Process,' Journal of Alloys and Compounds, Vol. 462-463, pp. 395-401, 2004. [11] B. S. Lee, and S. B. Jung, J. W. Yoon,'Enhancement of Cu Pillar Bumps by Electroless Ni Plating,' Microelectronic Engineering, Vol. 180, pp. 52-55, 2017. [12] A. Syed, K. Dhandapani, R. Moody, L. Nicholls, and M. Kelly,'Cu Pillar and μ-bump Electromigration Reliability and Comparison with High Pb, SnPb, and SnAg bumps,' in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), May 31- Jun 3, pp. 332-339, 2011. [13] Y. J. Chen, C. K. Chung, C. R. Yang, and C. R. Kao, 'Single-Joint Shear Strength of Micro Cu Pillar Solderbumps with Different Amounts of Intermetallics,' Microelectronics Reliability, vol. 53, pp. 47-52, 2013. [14] H. Lee, S. S. Wong, and S. D. Lopatin,'Correlation of Stress and Texture Evolutionduring Self- and Thermal Annealing of Electroplated Cu Films,' Journal of Applied Physics, Vol. 93, No. 7, pp. 3796-3804, 2003. [15] K.W. Chen, L.H. Hsu, J.K. Huang, Y.L. Wang, and K.Y. Lo,'A Strategic Copper PlatingMethod Without Annealing Process,' Journal of The Electrochemical Society, Vol. 156, No. 10, pp. 448-451, 2009. [16] J. Torres,'Advanced Copper Interconnections for Silicon CMOS Technologies,' Applied Surface Science, Vol. 91, No. 1-4, pp. 112-123, 1995. [17] M. Genanu, F. Mutuku,'Microstructure and Performance of Micro CU Pillars Assemblies,' in SMTA International Conference Proceedings, Sep 25-29, pp. 75-82, 2016. [18] L. C. Kao, L. H. Hsu, S. Brahma, B. C. Huang, C. C. Liu, and K. Y. Lo,'Stabilized copper plating method by programmed electroplated current: Accumulation of densely packed copper grains in the interconnect,' Applied Surface Science, Vol. 388, pp. 228-233, 2016. [19] JEDEC,'Solder Ball Shear,' vol. JESD22-B117B, ed:JEDEC Solid State echnology Association, May, pp. 22, 2014 [20] J. Y. HonChia, B. Cotterell, and T. C. Chai,'The Mechanics of the Solder Ball Shear Test and the Effect of Shear Rate,' Materials Science and Engineering: A, Vol. 417, pp. 259-274, 2006. [21] X. Huang, S. W. R. Lee , C. C. Yan , and S. Hui ,'Characterization and Analysis on the Solder Ball Shear Testing Conditions,' in Proc. Electronic Components and Technology Conference, May 29-June 1, pp. 1065-1071, 2001. [22] X. Huang , S.-W.R. Lee , and C. C. Yan ,'Experimental Investigation on the Progressive Failure Mechanism of Solder Balls During Ball Shear Test,' in Proc. Electronic Components and Technology Conference, May 28-31, pp. 968-973, 2002. [23] M. C. Yew , C. Y. Chou , and K. N. Chiang ,'Reliability Assessment for Solders with A Stress Buffer Layer Using Ball Shear Strength Test and Board-Level Finite Element Analysis,' Microelectronics Reliability, Vol. 47, no.9-11, pp. 1658-1662, 2007. [24] X. Zhang, E. H. Wong, C. Lee , T. C. Chai, Y. Ma, P. S. Teo, D. Pinjala , and S. Sampath,'Thermo-Mechanical Finite Element Analysis in A Multichip Build up Substrate Based Package Design,' Microelectronics Reliability, Vol. 44, no.4, pp. 611-619, 2004. [25] C. C. Lee, K. S. Kao, R. S. Cheng, C. J. Zhan, and T. C. Chang,'Reliability Enhancements of Chip-on-Chip Package with Layout Designs of Microbumps,' Microelectronic Engineering, Vol. 120, pp. 138-145, 2014. [26] D. W. Kim, and B. S. Kong,'The Effect of Hygro-Mechanical and Thermo-Mechanical Stress on Delamination of Gold Bump,' Microelectronics Reliability, Vol. 46, no.7, pp. 1087-1094, 2006. [27] Y. Tang, S. M. Luo, G. Y. Li, Z. Yang, R. Chen, Y. Han , and C. J. Hou,'Optimization of the Thermal Reliability of a Four-Tier Die-Stacked SiP Structure Using Finite Element Analysis and the Taguchi method,' Microelectronics Journal, Vol. 73, pp. 18-23, 2018. [28] K. C. Chang, and K. N. Chiang,'Improvements of Solder Ball Shear Strength of a Wafer-Level CSP Using a Novel Cu Stud Technology,' IEEE Transactions on Components and Packaging Technologies, Vol. 27, no.2, pp. 373-382, 2004. [29] K. N. Chiang, and C. A. Yuan,'An Overview of Solder Bump Shape Prediction Algorithms with Validations,' IEEE Transactions on Advanced Packaging, Vol. 24, no.2, pp. 158-162, 2001. [30] Z. H. Zhong, Finite Element Procedures for Contact-Impact Problems, Oxford University Press, New York, 1993. [31] R. C. Chang, and S. Y. Jhan, Nonlinear Finite Element Analysis, Chongqing University Press, Chongqing, 1990. (in Chinese) [32] T. Belytschko, W. K. Liu, and Moran, B., Nonlinear Finite Elements for Continua and Structures, 1st ed, John Wiley & Sons, New York, 2000. [33] F. P. Beer, and E. R. Johnston, Mechanics of Materials, McGraw-Hill, New York, 2002. [34] C. C. Yang, C. Witt, P. C. Wang, D. Edelstein, and R. Rosenberg,'Stress control during thermal annealing of copper interconnects,' Applied Physics Letters, Vol. 98, No. 5, pp. 051911, 2011. [35] D. Gan, P. Ho, R. Huang, J. Leu, J. Maiz, and T. Scherban, 'Isothermal stress relaxation in electroplated Cu films. I. Mass transport measurements', Journal of Applied Physics, vol. 97, no. 10, pp. 103531, 2005. [36] B. Z. Hong, and L. S. Su,'On Thermal Stresses and Reliability of a PBGA Chip Scale Package,' in Proceedings of 48th IEEE Electronic Components and Technology Conference, pp. 503-510, May 25-28, 1998. [37] D. E. Riemer,'Prediction of Temperature Cycling Life for SMT Solder Joints on TCE-Mismatched Substrates,' in Proceedings of 40th IEEE Electronic Components and Technology Conference, pp. 418-425, May 20-23, 1990. [38] C. C. Lee, T. F. Yang, K. S. Kao, R. C. Cheng, C. J. Zhan, and T. H. Chen, 'Development of Cu/Ni/SnAg Microbump Bonding Processes for Thin Chip-on-Chip Packages Via Wafer-Level Underfill Film,' IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, no. 9, pp. 1412–1419, 2012.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/98438-
dc.description.abstract科技隨著輕量化與小型化的發展,封裝體的尺度也逐漸縮小到微米等級,近年來,傳統覆晶結構也逐漸由原本的錫球發展出銅柱凸塊結構,由於銅柱凸塊相較於傳統錫球在相同面積下可以有較高密度的排列,並且可以更容易的控制球高,因此,銅柱凸塊也開始被大量生產製造,然而,一直以來封裝體中焊點的強度對於整體結構的可靠度都是非常重要的,其中影響焊點強度有一個很重要的因素是溫度,另外,剪切試驗是最被廣泛使用來評估焊點強度的方法。因此,本研究將藉由剪切試驗針對不同的溫度負載對於微凸塊強度的影響作探討。 本研究於不同溫度下分別做高溫實驗以及高溫儲存老化實驗,而高溫推球會因溫度越高,使得材料軟化,剪切力越小的趨勢。高溫儲存老化中,隨著烘烤時間增加,銅柱中的殘留應力被釋放,剛開始增加了凸塊的強度,隨後強度因晶粒成長而降低,因此,剪切力產生先上升後下降的現象,另外,本研究也利用有限元素分析作推球模擬,得到了應力及應變皆集中於墊片兩側的結果,墊片兩側即為整個結構最弱的地方,當材料間的黏著強度不夠時,就會從該處破裂,為了節省研發成本,有限元素分析可以做為日後微凸塊結構設計之參考。zh_TW
dc.description.abstractThe development of technology is miniaturization and lightweight, and the scale of the package has gradually narrowed to the micron level. In recent years, the flip chip structure has developed the copper pillar bump structure from the traditional solder ball, due to the copper pillar bump has a higher density than solder ball in the same area, and copper pillar bump's height can be controlled easilier. Therefore, the copper pillar bump has begun to be mass-produced afterwards. However, the strength of the solder joints in the package is very important for the reliability of the overall structure. One of the most important factors is temperature. Shear test is the most widely method to be used to evaluate solder joint strength. This study will explore the shear strength for the microbump under temperature loads. In this study, high temperature experiments and high temperature storage aging were performed at different temperatures. Due to the higher temperature, microbump's material will be soften, and the shearing force tends to be smaller. During high temperature storage aging, as the baking time increases, the residual stress of the copper pillar will be released, and enhance the strength of the bump at first, and then the strength decreases due to grain growth. Therefore, the shear force of the copper pillar first rises and then falls. In addition, this study also uses finite element analysis as the push ball simulation, and the stress and strain are concentrated on both sides of the pad.Thay's the weakest part of the whole structure. When the adhesive strength between the materials is weak, it will fracture from there. In order to save the development costs, finite element analysis can be used as a reference for future microbump structure design.en_US
dc.description.tableofcontents摘要 i Abstract ii 圖目錄 v 表目錄 vii 第一章 簡介 1 1.1文獻回顧 1 1.1.1封裝結構演進及可靠度問題 1 1.1.2錫球材料對於金屬界層成長影響 4 1.1.3金屬介層對封裝結構可靠度之影響 5 1.1.4銅柱對封裝結構可靠度之影響 8 1.1.5推球剪切試驗與分析 10 1.2研究動機與目標 17 第二章 理論分析 18 2.1錫球幾何外型預測 18 2.1.1截球法 18 2.1.2力平衡法 20 2.1.3能量法 23 2.2熱應力分析 24 2.3接觸理論 26 2.4破壞與硬化準則 37 第三章 微凸塊推球實驗方法與步驟 43 3.1儀器設備 43 3.2實驗步驟 47 3.3微凸塊老化因素的影響 49 3.4實驗結果與討論 50 第四章 微凸塊推球模擬分析與步驟 54 4.1有限元素推球分析 54 4.1.1分析模型建立 54 4.1.2材料參數設定 56 4.1.3接觸設定 58 4.1.4邊界條件設定 59 4.1.5收斂準則 61 4.2模擬結果與實驗數據驗證 64 第五章 結論與未來展望 69 5.1結論 69 5.2未來展望 69 參考文獻 70zh_TW
dc.language.isozh_TWzh_TW
dc.rights同意授權瀏覽/列印電子全文服務,2022-02-11起公開。zh_TW
dc.subject微凸塊zh_TW
dc.subject銅柱zh_TW
dc.subject溫度負載zh_TW
dc.subject剪切力zh_TW
dc.subject有限元素分析zh_TW
dc.subjectmicrobumpen_US
dc.subjectcopper pillaren_US
dc.subjecttemperature loaden_US
dc.subjectshear forceen_US
dc.subjectfinite elementen_US
dc.title溫度負載對於先進封裝微凸塊之剪切強度研究zh_TW
dc.titleInvestigation of Shear Strength for the Microbump of Advanced Packages under Temperature Loadsen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2019-02-11zh_TW
dc.date.openaccess2022-02-11-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypethesis and dissertation-
item.cerifentitytypePublications-
item.fulltextwith fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextrestricted-
Appears in Collections:機械工程學系所
Files in This Item:
File SizeFormat Existing users please Login
nchu-108-5105061013-1.pdf3.55 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.