Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98464
標題: 雷射直析技術製作微米級三維結構與製程熱流傳遞現象模擬分析
Fabrication of three-dimensional micro-structures by laser direct synthesis and analysis of the thermal–fluids transport phenomena of the process
作者: 黃佩君
Pei-Jun Huang
關鍵字: 雷射直析技術;三維金屬微結構;雷射微積層製造;Laser-direct-synthesis and patterning;Three-dimensional metallic microstructure;Laser-additive micro-fabrication
引用: [1] L. Austin, K. Manish, Integrated circuit packaging review with an emphasis on 3D packaging, Integration, The VLSI Journal, 60 (2018) 204-212. [2] P. Buffat, J. P. Borel, Size Effect on the Melting Temperature of Gold Particles, Physical Review A, 13(6) (1976) 2287-2298. [3] J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. Piqué, Three-Dimensional Printing of Interconnects by Laser Direct-Write of Silver Nanopastes, Advanced Materials, 2(40) (2010) 4462-4466. [4] Y. K. Liu, M. T. Lee, Laser Direct Synthesis Patterning of Silver Nano/Microstructures on a Polymer Substrate, ACS Applied Materials & Interfaces, 6(16) (2014)14576-14582. [5] M. T. Lee, D. Lee, A. Sherry, C. P. Grigoropoulos, Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write, Micromechanics and Microengineering, 21(9), (2011) 095018. [6] S. B. Walker, J. A. Lewis, Reactive Silver Inks for Patterning High-Conductivity Features at Mild Temperatures, The American Chemical Society, 134(3) (2012) 1419-1421. [7] C. Ladd, J. H. So, J. Muth, M. D. Dickey, 3D Printing of Free Standing Liquid Metal Microstructures, Advanced Materials, 25(36) (2013) 5081-5085. [8] S. H. Ko, J. Chung, N. Hotz, K. H. Nam, C. P. Grigoropoulos, Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication, Journal of Micromechanics and Microengineering, 20(12) (2010) 125010. [9] W. Chuang, D. Jingyan, Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting, Journal of Micromechanics and Microengineering,23(2) (2013) 025017. [10] C. Kullmann, C. S. Niklas, M. T. Lee, S. H. Ko, N. Hotz, C. P. Grigoropoulos, D. Poulikakos, 3D micro-structures by piezoelectric inkjet printing of gold nanofluids, Micromechanics and Microengineering, 22(5) (2012) 055022. [11] Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, S. Kawata, 3D Metallic Nanostructure Fabrication by Surfactant-Assisted Multiphoton-Induced Reduction, Small, 5(10) (2009) 1144-1148. [12] S. S. Mark A, S. Gunasekaran, J. A. Lewis, Laser-assisted direct ink writing of planar and 3D metal architectures, Proceedings of the National Academy of Sciences, 113(22) (2016) 6137. [13] J. Yeo, S. Hong, M. Wanit, Y. D. Suh, J. Lee, J. Kwon, S. H. Ko, Digital 3D Local Growth of Iron Oxide Micro- and Nanorods by Laser-Induced Photothermal Chemical Liquid Growth, Physical Chemistry C, 118(28) (2014) 15448-15454. [14] J. Yeo, S. Hong, G. Kim, H. Lee, Y. D. Suh, I. Park, C. P. Grigoropoulos, S. H. Ko, Laser-Induced Hydrothermal Growth of Heterogeneous Metal-Oxide Nanowire on Flexible Substrate by Laser Absorption Layer Design, ACS Nano, 9(6) (2015) 6059-6068. [15] A. Piqué, R. C. Y. Auyeung, H. Kim, N. A. Charipar, S. A. Mathews, Laser 3D micro-manufacturing, Journal of Physics D: Applied Physics, 49(22) (2016) 223001. [16] S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Optics Letters, 22(2) (1997) 132-134. [17] S. Maruo, K. Ikuta, Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization, Sensors and Actuators A: Physical, 100(1) (2002) 70-76. [18] Y. Lu, M. Gazell, S. Gerry, S. Chen, R. Krishnendu, A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds, Journal of Biomedical Materials Research Part A, 77(2) (2006) 396-405. [19] F. P. W. Melchels, J. Feijen, D. W. Grijpma, A review on stereolithography and its applications in biomedical engineering, Biomaterials, 31(24) (2010) 6121-6130. [20] M. J. Wolf, T. Dretschkow, B. Wunderle, N. Jurgensen, G. Engelmann, O. Ehrmann, A. Uhlig, B. Michel, H. Reichl, High aspect ratio TSV copper filling with different seed layers, in 2008 58th Electronic Components and Technology Conference, (2008) 563-570. [21] Z. Liang, L. Z. Quan, S. W. Chen, Y. D. Wang, W. M. Long, Y. H. Guo, S. Q. Wang, Y. Guo, W.Y. Liu, Materials, processing and reliability of low temperature bonding in 3D chip stacking, Journal of Alloys and Compounds, 750 (2018) 980-995. [22] K. C. Rolle, Heat and Mass Transfer, SI EDITION, (2015). [23] C. P. Grigoropoulos, Transport in Laser Microfabrication: fundamentals and applications, Cambridge University Press, (2009). [24] 李輝煌, 田口方法:品質設計的原理與實務, 高立, (2011). [25] Incropera, Introduction To Heat Transfer 5/e (Wiley), (2006) 802-803. [26] R. N. Kacker, E. S. Lagergren, J. J. Filliben, Taguchi's Orthogonal Arrays Are Classical Designs of Experiments, Journal of Research of the National Institute of Standards and Technology, 96(5) (1991) 577-591.
摘要: 
本研究利用雷射直析技術 (Laser direct synthesis and patterning, LDSP) 製作微米尺寸的三維導電結構。此技術相對於微機電製程的優點為能在常溫、常壓下進行,製程步驟簡易,並且製程溶液能回收再利用,具備綠色製程的優點。
  雷射直析技術原理為基板表面的反應溶液吸收雷射光後,聚焦點附近的溫度局部升高,達到金屬離子還原的溫度,即可析出金屬結構。反應溶液為利用波長655nm的連續式紅光雷射作為加熱源,參考立體光刻的製程方式將基板浸入盛裝反應溶液的反應槽內,利用奈、微米移動平台移動基板,自基板表面析出成形金屬微米柱。
  本論文利用田口法分析製程參數(雷射功率、平台移動速度、反應溶液混合比例)對三維結構外型及尺寸之影響。其中影響外型的品質特性設定為微米柱的直徑標準差;若標準差越小,表示結構外型越平整,成長的微米柱較為筆直。本研究也量測金屬微米住的電阻率,分析導電性,以資持續優化三維導線之綜合製程參數。
  本研究同時運用多重物理耦合數值模擬分析加工區附近的熱流傳遞現象,進一步分析了解不同製程參數設定對製程結果的影響,並藉由模擬的溫度場與實驗量測所得金屬微米柱的半徑相互對照,得到不同混合比例的反應溶液中,金屬離子發生還原反應所需要的最低溫度。此最低反應溫度未來將作為進一步製程模擬分析的重要參數,建立能估測不同製程參數組合下三維結構成形情況之模型。

In this study, laser direct synthesis and patterning (LDSP) was used to fabricate three-dimensional metallic microstructure. Compared to conventional microfabrication processes, the main advantage of this technology is that it can be carried out under normal temperature and pressure, and the process solution can be easily recycled and reused.
  In a typical process, the process ionic solution containing absorbing material, is irradiated with laser directly to initiate the reduction reaction in the ionic solution near to the surface of the substrate. Microstructure is formed once the reaction temperature is reached in the solution. A continuous laser with a wavelength of 655 nm is used as a heating source. The substrate is immersed into a tank containing the reaction solution. The substrate is moved down by the high precision moving stage, and growing the metal microrod structure upward from the surface of the substrate. The microstructure is then successfully by pilling up on the fabricated structure layer.
  In addition, a comprehensive investigation on the process parameters were set by an orthogonal table with the following parameters: laser power, stage moving speed, reaction solution mixing ratio, and the influence of process parameters on the results of the metal microstructures was discussed. One of the most important goal is to optimize the flatness, diameter and conductivity of the metal microstructures. Furthermore, the phenomenon near the heat source in the processing area is analyzed by COMSOL Multiphysics software including thermalfluid transport and liquid-solid phase change. The variation of the diameter corresponding to different process parameters were investigated and discussed. The simulation technology and model can be used in the future for optimizing process parameters.
URI: http://hdl.handle.net/11455/98464
Rights: 同意授權瀏覽/列印電子全文服務,2018-12-03起公開。
Appears in Collections:機械工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105061210-1.pdf2.83 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.