Please use this identifier to cite or link to this item:
標題: 仿生半透薄膜用以微流體驅動之元件開發與分析
Semipermeable Biomimetic Membrane for Microfluidic Application
作者: 莊承翰
Chen-Han Chuang
關鍵字: 半透膜;微流道晶片;滲透壓;微幫浦;Semipermeable Membrane;Microfluidic;Osmotic Pressure;Micropump
引用: 1. Wikipedia. Conductivity (electrolytic). 2018 10 July 2018. 2. Agre, P., The Aquaporin Water Channels. Proceedings of the American Thoracic Society, 2006. 3(1): p. 5-13. 3. Juncker, D., et al., Autonomous Microfluidic Capillary System. Analytical Chemistry, 2002. 74(24): p. 6139-6144. 4. Cath, T.Y., A.E. Childress, and M. Elimelech, Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 2006. 281(1–2): p. 70-87. 5. Berthier, E. and D.J. Beebe, Flow rate analysis of a surface tension driven passive micropump. Lab on a Chip, 2007. 7(11): p. 1475-1478. 6. Kazuo, H. and M. Ryutaro, A pneumatically-actuated three-way microvalve fabricated with polydimethylsiloxane using the membrane transfer technique. Journal of Micromechanics and Microengineering, 2000. 10(3): p. 415. 7. Lee, S.J., et al., Characterization of laterally deformable elastomer membranes for microfluidics. Journal of Micromechanics and Microengineering, 2007. 17(5): p. 843. 8. Studer, V., et al., Scaling properties of a low-actuation pressure microfluidic valve. Journal of Applied Physics, 2004. 95(1): p. 393-398. 9. Chih-Hao, W. and L. Gwo-Bin, Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels. Journal of Micromechanics and Microengineering, 2006. 16(2): p. 341. 10. Song-Bin, H., et al., A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance. Journal of Micromechanics and Microengineering, 2008. 18(4): p. 045008. 11. Gu, W., et al., Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(45): p. 15861. 12. Bo ̈hm, S., W. Olthuis, and P. Bergveld, An Integrated Micromachined Electrochemical Pump and Dosing System. Biomedical Microdevices, 1999. 1(2): p. 121-130. 13. Chuan-Hua, C. and J.G. Santiago, A planar electroosmotic micropump. Journal of Microelectromechanical Systems, 2002. 11(6): p. 672-683. 14. Lee, A.P., et al., Microfluidic Air-Liquid Cavity Acoustic Transducers for On-Chip Integration of Sample Preparation and Sample Detection. JALA: Journal of the Association for Laboratory Automation, 2010. 15(6): p. 449-454. 15. M Walker, G. and D. J Beebe, A passive pumping method for microfluidic devices. Vol. 2. 2002. 131-4. 16. James, L.W., et al., Microcontact printing of self-assembled monolayers: applications in microfabrication. Nanotechnology, 1996. 7(4): p. 452. 17. Lewis, G.N., THE OSMOTIC PRESSURE OF CONCENTRATED SOLUTIONS, AND THE LAWS OF THE PERFECT SOLUTION. Journal of the American Chemical Society, 1908. 30(5): p. 668-683. 18. Chaplin, M. Osmotic pressure. 2006 7 September, 2018; Available from: 19. Zavitsas, A.A., Properties of Water Solutions of Electrolytes and Nonelectrolytes. The Journal of Physical Chemistry B, 2001. 105(32): p. 7805-7817. 20. Pirouzi, A., et al., Experiment and correlation of osmotic coefficient for aqueous solution of carboxylic acids using NRTL nonrandom factor model. Fluid Phase Equilibria, 2012. 327: p. 38-44. 21. Graça, S., et al., Yeast water channels: an overview of orthodox aquaporins. Biology of the Cell, 2011. 103(1): p. 35-54. 22. Thomas, D., et al., Aquaglyceroporins, one channel for two molecules. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2002. 1555(1): p. 181-186. 23. 王立宏, 流體力學必勝秘笈. 2013. 24. Tan, W.-H. and S. Takeuchi, A trap-and-release integrated microfluidic system for dynamic microarray applications. Proceedings of the National Academy of Sciences, 2007. 104(4): p. 1146-1151. 25. Buffle, J., Z. Zhang, and K. Startchev, Metal Flux and Dynamic Speciation at (Bio)interfaces. Part I: Critical Evaluation and Compilation of Physicochemical Parameters for Complexes with Simple Ligands and Fulvic/Humic Substances. Environmental Science & Technology, 2007. 41(22): p. 7609-7620. 26. Tang, C., et al., Biomimetic aquaporin membranes coming of age. Desalination, 2015. 368: p. 89-105. 27. Zhao, Y., et al., Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. Journal of Membrane Science, 2012. 423- 424: p. 422-428.
微流道實驗中流體驅動方式多以針筒幫浦為主,其因管路之連接,外接能源等 需求,造成實驗將受場地與背景知識限制。本研究將仿生半透薄膜整合至微流道晶 片,首次使用滲透壓原理產生流體驅動力,以達到不需外接管路與電力的流道驅動 系統,並實驗分析其結果。研究以數種體積莫耳濃度氯化鈉(2M NaCl)溶液作為 滲透驅動液(Draw Solution),去離子水(Deionized Water)作為供給液(Feed Solution)。以 2 體積莫耳濃度(M)之濃度差為例,可使面積 153.94 mm2 之仿生半透
薄膜水通量到達 22.68 μL/mm2・hr。
本研究探討不同薄膜有效面積、環境溫度、蒸發量、長時間操作與不同驅動液 與供給液間濃度差所產生之流量差異。另外因仿生薄膜無法百分之百阻隔電解質 離子(如Na+ 與Cl-),故測量供給液端之電導率(ElectricalConductivity),探討氯化鈉之回滲現象,並進一步探討是否會造成後續生物醫學相關應用影響。本研究亦 開發不同插銷式薄膜夾具,可使用於聚甲基丙烯酸甲酯(PMMA)與聚二甲基矽氧 烷(PDMS)。
於微尺度流動下比較不同濃度驅動液(1 M 與 2 M 之氯化鈉水溶液)流速之 差異,並証實在微尺度流道內應用滲透壓驅動流體的可行性。利用 Y 字型與 Ψ 字 形流道瞭解使用滲透壓作為流體驅動力時,對流道內液體擴散之影響;並進一步展 示硫酸銅溶液與銅離子指示劑平行流入流道中之呈色反應,輔以灰階形式分析,並 與針筒幫浦推動之方法比較。生物研究應用常需抓取稀少細胞,本研究於微流道晶 片出口處使用薄膜夾具插銷作為流體負壓驅動力,流入低濃度巨噬細胞後進一步 紀錄其抓取與定位狀況,並與使用針筒幫浦驅動之相同設計晶片比較抓取率,以探 討此技術於微米級流道應用之發展性。最後將微接觸印刷技術結合半透膜,透過滲 透壓液體驅動力產生之流線操控微粒子排列,探討半透薄膜於微尺度之多元應用。

Fluid delivery is demonstrated by pressure difference. According to the principle of osmosis, through the membrane we can generate a osmotic pressure (∆π) by making the feed solution and draw solution concentration different (∆C). We used 2M, 1.63M, 1.26M, 1M, 0.89M, 0.52M, 0.15M sodium chloride solution, 1M magnesium dichloride solution and 1M sucrose solution as the draw solution and deionized water as the feed solution.
The water flux performance of the membrane influences the usability of pumpless device. To understand the performance, we designed three membrane test cells with different active area. In the experiment, each active area is using three different concentration of sodium chloride draw solution and deionized water as feed solution, then timing for an hour to record the volume increment of draw solution. Due to the electrolyte rejection of the membrane is not 100%, we also measured the conductivity of feed solution to verify the usage of biological experiments can be achieved.
We also used different type of PMMA microfluidic to verify the application of osmotic pressure such as Y channel or Ψ channel. There is a plug-in design for the PMMA microfluidic. In microfluidic research, PDMS chip is the most common type of microfluidic. We designed a plug-in to combine the outlet, biomimetic membrane fixture and the draw solution tank. Use the plug-in in cell trap chip to verify the osmotic pressure driven liquid delivery system can replace the pump. Finally, to manipulate cells or particles, we used the technique which is micro contact printing to construct micro structure onto the membrane.
Rights: 同意授權瀏覽/列印電子全文服務,2021-10-11起公開。
Appears in Collections:機械工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105061243-1.pdf4.34 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.