Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98494
標題: 結合現地相反轉法與生物降解法進行底泥中疏水性有機污染物之整治
Coupling in situ phase-inversion emulsification with biodegradation for the effective remediation of sediments contaminated by polychlorinated biphenyls and hexachlorobenzene.
作者: 葉家瑋
Chia-Wei Yeh
關鍵字: 底泥整治;疏水性有機污染物;多氯聯苯;六氯苯;現地相反轉法;生物降解;Sediment remediation;Hydrophobic organic compounds (HOCs);Polychlorinated biphenyls;Hexachlorobenzene;In situ phase inversion emulsification;Biodegradation
引用: Aken, B.V., Correa, P.A., Schnoor, J.L., 2010. Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises. Environmental Science & Technology 44, 2767-2776. Alleman, B., Tso-Liu, W., Chandler, D., Loffler, F., Cole, J., Lovley, D., Edwards, E., McCarty, P., Fields, M., Pillai, S., Haas, P., Shepard, A., Halden, R., Steffan, R., Hashsham, S., Sorenson, K., Hazen, T., Stroo, H., Johnson, P., Tiedje, J., Leeson, A., Ward, H., 2005. SERDP and ESTCP Expert Panel Workshop on Research and Development Needs for the Environmental Remediation Application of Molecular Biological Tools. Anton, N., Benoit, J.-P., Saulnier, P., 2008. Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release 128, 185-199. ATSDR, 2015. Toxicological Profile for Hexachlorobenzene. Agency for Toxic Substances and Disease Registry, U.S. Public Health Service. Bailey, R.E., 2001. Global hexachlorobenzene emissions. Chemosphere 43, 167-182. Baker, J.R., Mihelcic, J.R., Shea, E., 2000. Estimating Koc for persistent organic pollutants: limitations of correlations with Kow. Chemosphere 41, 813-817. Bio-Rad, 2018. Borja, J., Taleon, D.M., Auresenia, J., Gallardo, S., 2005. Polychlorinated biphenyls and their biodegradation. Process Biochemistry 40, 1999-2013. BÜCHI, 2018. SpeedExtractor E-916 / E-914 Technical data sheet. Bursian, S.J., Newsted, J.L., Zwiernik, M.J., 2011. Chapter 41 - Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans A2 - Gupta, Ramesh C. Reproductive and Developmental Toxicology. Academic Press, San Diego, pp. 543-567. Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2010. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 201000080. Chang, B., Liu, W., Yuan, S., 2001. Microbial dechlorination of three PCB congeners in river sediment. Chemosphere 45, 849-856. Chen, I.-M., Chang, B.-V., Yuan, S.-Y., Wang, Y.-S., 2002. Reductive Dechlorination of Hexachlorobenzene under Various Additions. Water, Air, and Soil Pollution 139, 61-74. Chen, Y.-C., Chen, C.-Y., Hwang, H.-J., Chang, W.-B., Yeh, W.-J., Chen, M.-H., 2004. Comparison of the metal concentrations in muscle and liver tissues of fishes from Erren River Southwestern Taiwan. J. Food Drug Anal., 358-366. Chifiriuc, M.C., Gheorghe, I., Czobor, I., Florea, D.A., Mateescu, L., Caplan, M.E., Caplan, D.M., Lazar, V., 2017. 18 - Advances in molecular biology based assays for the rapid detection of food microbial contaminants A2 - Grumezescu, Alexandru Mihai. Food Preservation. Academic Press, pp. 645-669. Chiu, E.Y.-H., Lin, S.-S., 2014. 淺談次世代定序技術 (Next Generation Sequencing, NGS) 發展與其應用. 種苗科技專訊, 13-17. Choi, H., Al-Abed, S.R., Agarwal, S., 2009. Catalytic role of palladium and relative reactivity of substituted chlorines during adsorption and treatment of PCBs on reactive activated carbon. Environmental science & technology 43, 7510-7515. Doong, R.-A., Sun, Y.-C., Liao, P.-L., Peng, C.-K., Wu, S.-C., 2002. Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere 48, 237-246. Ee, S.L., Duan, X., Liew, J., Nguyen, Q.D., 2008. Droplet size and stability of nano-emulsions produced by the temperature phase inversion method. Chemical Engineering Journal 140, 626-631. Eek, E., Cornelissen, G., Kibsgaard, A., Breedveld, G.D., 2008. Diffusion of PAH and PCB from contaminated sediments with and without mineral capping; measurement and modelling. Chemosphere 71, 1629-1638. EPA-Taiwan, 2013. Program for Managing Contaminated Sediments in Taiwan from 2010 to 2012(EPA-99-GA101-03-A205). Falbe, J., 2012. Surfactants in Consumer Products: Theory, Technology and Application. Springer Berlin Heidelberg. FernLey, G.W., 1978. Zwitterionic surfactants: Structure and performance. Journal of the American Oil Chemists' Society 55, 98-103. Furukawa, K., Miyazaki, T., 1986. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. Journal of bacteriology 166, 392-398. Furukawa, K., Tomizuka, N., Kamibayashi, A., 1983. Metabolic breakdown of Kaneclors (polychlorobiphenyls) and their products by Acinetobacter sp. Applied and environmental microbiology 46, 140-145. Gold-Bouchot, G., Silva-Herrera, T., Zapata-Pérez, O., 1995. Organochlorine pesticide residue concentrations in biota and sediments from Río Palizada, Mexico. Bulletin of Environmental Contamination and Toxicology 54, 554-561. Gomes, H.I., Dias-Ferreira, C., Ribeiro, A.B., 2013. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Science of The Total Environment 445-446, 237-260. Hendrickson, E.R., Payne, J.A., Young, R.M., Starr, M.G., Perry, M.P., Fahnestock, S., Ellis, D.E., Ebersole, R.C., 2002. Molecular Analysis of Dehalococcoides 16S Ribosomal DNA from Chloroethene-Contaminated Sites throughout North America and Europe. Applied and Environmental Microbiology 68, 485-495. Hirano, T., Ishida, T., Oh, K., Sudo, R., 2007. Biodegradation of chlordane and hexachlorobenzenes in river sediment. Chemosphere 67, 428-434. Hong, A., City, S.L., 2008. In situ sediment ozonator for remediation of PCB, PAH, DDT and other recalcitrant chemicals. Salt Lake City, UT: NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET). Hou, L.-H., Dutta, S.K., 2000. Phylogenetic characterization of several para- and meta-PCB dechlorinating Clostridium species: 16s rDNA sequence analyses. Letters in Applied Microbiology 30, 238-243. Hsu, P.-a., 2006. Research and Application of the DGGE Technique in the Studies of Environmental Microbial Diversity and Remediation of Pollutants. 104. Huesemann, M.H., Hausmann, T.S., Fortman, T.J., Thom, R.M., Cullinan, V., 2009. In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass (Zostera marina). Ecological Engineering 35, 1395-1404. IARC, 2018. Agents Classified by the IARC Monographs, Volumes 1–121. James, L.A., 2013. Legacy sediment: Definitions and processes of episodically produced anthropogenic sediment. Anthropocene 2, 16-26. Jiang, J.-J., Lee, C.-L., Fang, M.-D., Ko, F.-C., Baker, J.E., 2011. Polybrominated diphenyl ethers and polychlorinated biphenyls in sediments of southwest Taiwan: Regional characteristics and potential sources. Marine Pollution Bulletin 62, 815-823. Jones, K.C., de Voogt, P., 1999. Persistent organic pollutants (POPs): state of the science. Environmental Pollution 100, 209-221. Kan, A.T., Fu, G., Tomson, M.B., 1994. Adsorption/Desorption Hysteresis in Organic Pollutant and Soil/Sediment Interaction. Environmental Science & Technology 28, 859-867. Kawagoshi, Y., Hino, N., Fujimoto, A., Nakao, M., Fujita, Y., Sugimura, S., Furukawa, K., 2005. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. Journal of Bioscience and Bioengineering 100, 524-530. Keillor, P., 2007. Deciding about sediment remediation. A step-by-step guide to making the decisions. Superior (WI): University of Wisconsin Sea Grant Institute. Kimbrough, R.D., 1987. Human Health Effects of Polychlorinated Biphenyls (PCBs) and Polybrominated Biphenyls (PBBs). Annual Review of Pharmacology and Toxicology 27, 87-111. Kimbrough, R.D., 1995. Polychlorinated Biphenyls (PCBs) and Human Health: An Update. Critical Reviews in Toxicology 25, 133-163. Kodavanti, P.R.S., 2014. Polychlorinated Biphenyls (PCBs). Encyclopedia of the Neurological Sciences (Second Edition). Academic Press, Oxford, pp. 917-921. Kodavanti, P.R.S., Loganathan, B.G., 2014. Chapter 25 - Polychlorinated biphenyls, polybrominated biphenyls, and brominated flame retardants A2 - Gupta, Ramesh C. Biomarkers in Toxicology. Academic Press, Boston, pp. 433-450. L.-H., H., S.K., D., 2000. Phylogenetic characterization of several para- and meta-PCB dechlorinating Clostridium species: 16s rDNA sequence analyses. Letters in Applied Microbiology 30, 238-243. Lee, C.-L., Song, H.-J., Fang, M.-D., 2005. Pollution topography of chlorobenzenes and hexachlorobutadiene in sediments along the Kaohsiung coast, Taiwan—a comparison of two consecutive years' survey with statistical interpretation. Chemosphere 58, 1503-1516. Li, Y.-F., Harner, T., Liu, L., Zhang, Z., Ren, N.-Q., Jia, H., Ma, J., Sverko, E., 2010. Polychlorinated Biphenyls in Global Air and Surface Soil: Distributions, Air−Soil Exchange, and Fractionation Effect. Environmental Science & Technology 44, 2784-2790. Liang, B., Wang, L.-Y., Mbadinga, S.M., Liu, J.-F., Yang, S.-Z., Gu, J.-D., Mu, B.-Z., 2015. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5, 37. Lijzen, J.P.A., Baars, A.J., Otte, P.F., Rikken, M.G.J., Swartjes, F.A., Verbruggen, E.M.J., Wezel, A.P.v., 2001. Technical evaluation of the Intervention Values for Soil/sediment and Groundwater. Human and ecotoxicological risk assessment and derivation of risk limits for soil, aquatic sediment and groundwater. Technisch-inhoudelijke evaluatie van de Interventiewaarden voor bodem/sediment en grondwater. Humane en exotoxicologische risicobeoordeling en afleiding van risicogrenzen voor bodem, sediment en grondwater. Rijksinstituut voor Volksgezondheid en Milieu RIVM. Ling, Y.-C., Soong, D.-K., Lee, M.-K., 1995. PCDD/DFS and coplanar pcbs in sediment and fish samples from the Er-Jen river in Taiwan. Chemosphere 31, 2863-2872. Liu, C., Wang, S.K., Lu, Y.B., 2000. Chemical characterization of Tan‐Sui River sediment in North Taiwan. Toxicological & Environmental Chemistry 76, 205-218. Liu, Y., Liu, L.-Z., Song, L., Zhou, Y.-G., Qi, F.-J., Liu, Z.-P., 2014. Photobacteriumaquae sp. nov., isolated from a recirculating mariculture system. International journal of systematic and evolutionary microbiology 64, 475-480. Mülhardt, C., Beese, E.W., 2007. 4 - The Polymerase Chain Reaction. Molecular Biology and Genomics. Academic Press, Burlington, pp. 65-94. Matturro, B., Ubaldi, C., Rossetti, S., 2016. Microbiome Dynamics of a Polychlorobiphenyl (PCB) Historically Contaminated Marine Sediment under Conditions Promoting Reductive Dechlorination. Frontiers in Microbiology 7. Mei, Z., Xu, J., Sun, D., 2011. O/W nano-emulsions with tunable PIT induced by inorganic salts. Colloids and Surfaces A: Physicochemical and Engineering Aspects 375, 102-108. Mulligan, C.N., Fukue, M., Sato, Y., 2010. Sediments contamination and sustainable remediation. IWA Publishing, Colchester. Nam, P., Kapila, S., Liu, Q., Tumiatti, W., Porciani, A., Flanigan, V., 2001. Solvent extraction and tandem dechlorination for decontamination of soil. Chemosphere 43, 485-491. Natarajan, M., Wu, W.-M., Wang, H., Bhatnagar, L., Jain, M.K., 1998. Dechlorination of spiked PCBs in lake sediment by anaerobic microbial granules. Water Research 32, 3013-3020. Ogino, Y., Miyagawa, S., Iguchi, T., 2016. Subchapter 101G - 2,3,7,8-Tetrachlorodibenzo-p-dioxin/Polychlorinated Biphenyls A2 - Takei, Yoshio. in: Ando, H., Tsutsui, K. (Eds.). Handbook of Hormones. Academic Press, San Diego, pp. 583-e101G-581. Pakdeesusuk, U., Freedman, D.L., Lee, C.M., Coates, J.T., 2003. Reductive dechlorination of polychlorinated biphenyls in sediment from the Twelve Mile Creek arm of Lake Hartwell, South Carolina, USA. Environmental Toxicology and Chemistry: An International Journal 22, 1214-1220. Porta, M., Zumeta, E., 2002. Implementing the Stockholm Treaty on Persistent Organic Pollutants. Occupational and Environmental Medicine 59, 651-652. Praveckova, M., Brennerova, M.V., Holliger, C., De Alencastro, F., Rossi, P., 2016. Indirect Evidence Link PCB Dehalogenation with Geobacteraceae in Anaerobic Sediment-Free Microcosms. Frontiers in Microbiology 7. Qin, H., Brookes, P.C., Xu, J., 2016. Arbuscular Mycorrhizal Fungal Hyphae Alter Soil Bacterial Community and Enhance Polychlorinated Biphenyls Dissipation. Frontiers in Microbiology 7. Quensen, J.F., Boyd, S.A., Tiedje, J.M., 1990. Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Applied and Environmental Microbiology 56, 2360-2369. Ramamurthy, T., Chowdhury, G., Pazhani, G.P., Shinoda, S., 2014. Vibrio fluvialis: an emerging human pathogen. Frontiers in Microbiology 5, 91. Reis-Filho, J.S., 2009. Next-generation sequencing. Breast Cancer Research 11, S12. Saiki, R., Gelfand, D., Stofel, S., Scharf, S., Higuchi, R., Horn, G., Mullis, K., Erlich, H., 1988. Amplification of a Short DNA Stretch by Repeated Cycles of In Vitro DNA Polymerization. Sanger, F., Nicklen, S., Coulson, A.R., 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences 74, 5463-5467. Seweryn, A., 2018. Interactions between surfactants and the skin – Theory and practice. Advances in Colloid and Interface Science. Shinoda, K., Arai, H., 1964. The Correlation between Phase Inversion Temperature In Emulsion and Cloud Point in Solution of Nonionic Emulsifier. The Journal of Physical Chemistry 68, 3485-3490. Srinivasan, S., Gunasekaran, P., Rajendhran, J., 2017. 3 - Fundamentals of Molecular Biology. Current Developments in Biotechnology and Bioengineering. Elsevier, pp. 59-80. Starek-Świechowicz, B., Budziszewska, B., Starek, A., 2017. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacological Reports 69, 1232-1239. Sun, J., Pan, L., Zhu, L., 2018. Formation of hydroxylated and methoxylated polychlorinated biphenyls by Bacillus subtilis: New insights into microbial metabolism. Science of The Total Environment 613-614, 54-61. Tadros, T.F., 2009. Emulsion Science and Technology: A General Introduction. in: Tadros, P.D.T.F. (Ed.). Emulsion Science and Technology. Takigami, H., Etoh, T., Nishio, T., Sakai, S.-i., 2008. Chemical and bioassay monitoring of PCB-contaminated soil remediation using solvent extraction technology. Journal of Environmental Monitoring 10, 198-205. Tanabe, S., 1988. PCB problems in the future: Foresight from current knowledge. Environmental Pollution 50, 5-28. Trujillo, A.P., 2011. Essentials of Oceanography, 10th Edition. PHI Learning. Udarbe Zamora, E.M., 2014. Hexachlorobenzene A2 - Wexler, Philip. Encyclopedia of Toxicology (Third Edition). Academic Press, Oxford, pp. 869-871. Vitale, I., 2017. Molecular Biology. Reference Module in Life Sciences. Elsevier. Webster, E., Mackay, D., Wania, F., 1998. Evaluating environmental persistence. Environmental Toxicology and Chemistry 17, 2148-2158. Wu, S.C., Gschwend, P.M., 1986. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environmental Science & Technology 20, 717-725. Yamashita, N., Kannan, K., Imagawa, T., Villeneuve, D.L., Hashimoto, S., Miyazaki, A., Giesy, J.P., 2000. Vertical Profile of Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, Naphthalenes, Biphenyls, Polycyclic Aromatic Hydrocarbons, and Alkylphenols in a Sediment Core from Tokyo Bay, Japan. Environmental Science & Technology 34, 3560-3567. Yuan, S.Y., Liu, C., Liao, C.S., Chang, B.V., 2002. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 49, 1295-1299. Zhang, X.-L., Luo, X.-J., Chen, S.-J., Wu, J.-P., Mai, B.-X., 2009. Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment from an industrialized region of South China. Environmental Pollution 157, 1917-1923. 行政院環境保護署, 2018. 李思寬, 2016. 結合相反轉法與再利用加蓋法進行底泥中疏水性有機污染物移除之技術研發 國立中興大學環境工程所碩士論文. 經濟部水利署, 2017.
摘要: 
底泥污染在台灣是一個嚴重環境問題,在過去二十年內,底泥中常被檢測到高濃度的多氯聯苯(Aroclor 1254)以及六氯苯(Hexachlorobenzene, HCB),尤其是位於台南市二仁溪底泥中之疏水性有機化合物的污染非常嚴重,包括多氯聯苯、多環芳香烴、多溴聯苯醚、六氯苯以及塑化劑的污染,然而這些疏水性有機化合物通常具有較高的辛醇—水分配係數(Kow)、較低生物降解特性並且容易累積在表層底泥導致底棲生物暴露其中,再經由食物鏈途徑,容易造成生物累積及形成生物放大效應,最終對生態系及人體健康造成危害。
本研究目的在結合現地相反轉法與生物降解法進行底泥中Aroclor 1254及HCB的整治,原構想操作方式是:(1)注入高溫之水在油中乳化液進入底泥孔隙中,直接接觸疏水性有機污染物,(2)藉高溫加速脫附與擴散之特性將污染物有效傳輸至油相中,(3)再注入常溫水造成降溫完成乳化液之相反轉而形成油在水中乳化液,藉由水利沖提快速有效地將污染物傳輸至底泥上方加以去除,(4)於完成回收後,可利用下方底泥中經過熱篩而佔優勢之產氫菌成為優勢菌群進行殘餘乳化液之發酵產氫,(5)上方底泥中之厭氧還原脫鹵菌群利用氫氣進行有效且持續之生物降解作用。
經實驗證實經單次相反轉回收後,可分別去除約62% 風化之Aroclor 1254及31%風化之六氯苯,經由生物降解作用後,可在70天內將殘餘的Aroclor 1254以及六氯苯有效去除,總去除率可達98%;然而PCR-DGGE結果顯示上下層之菌相與原構想截然不同,但次世代定序技術之定序結果則支持原實驗構想,結果顯示出底泥經過現地相反轉回收後其菌相有明顯較多產氫菌群及相關分解菌存在,可有效降解Aroclor 1254及HCB。本研究結果顯示結合現地相反轉法及生物降解法應用於大規模現地整具有高度可行性。

Sediment contamination in Taiwan is a critical environmental problem. The sediments in Er-Ren River (ERR) in the southern Taiwan is severely contaminated by hydrophobic organic compounds (HOCs), such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenylethers (PBDEs), hexachlorobenzene, and phthalates. Among them, in the past two decades, PCBs have been detected at high levels. and HCB were detected most frequently. Due to their high Kow and low biodegradability, these HOCs easily accumulated in the surface sediment and accesable to benthic organisms. Thus, they were readily bioconcentrated and biomagnified through trophic levels. Consequently, through trophic relationship, these PCBs could affect ecosystem well-beings and human health. This research is aimed to couple in situ phase-inversion emulsification (ISPIE) and biodegradation for effective remediation of sediments contaminated by Aroclor 1254 and hexachlorobenzene (HCB). This study has shown that single phase-inverse emulsification operation can remove 62% of weathered Aroclor 1254 and 31% of weathered HCB. The the following biodegradation generally is decreasing. For weathered HCB and Aroclor1254, the overall removal could reach higher than 98% in 70 days. The results of PCR-DGGE and sequencing show that the microbial communities are quite different from our expectation. However, the microbial communities (e.g. thermophilic bacteria) in the sediment can effectively degrade Aroclor 1254 and HCB. These results strongly support that this new technology has high feasibility to be implemented in full-scale field remediation.
URI: http://hdl.handle.net/11455/98494
Rights: 同意授權瀏覽/列印電子全文服務,2021-08-21起公開。
Appears in Collections:環境工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105063222-1.pdf3.06 MBAdobe PDFThis file is only available in the university internal network   
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.