Please use this identifier to cite or link to this item:
標題: 以田口方法改善高鹼度FGD廢水中重金屬干擾研究
Mitigation of interference in heavy metal analysis in highly alkaline FGD wastewater by Taguchi method
作者: 詹仕哲
Shi-Zhe Zhang
關鍵字: 尾氣除硫;廢水;重金屬;火焰式原子吸收光譜儀;干擾;田口方法;Flue gas desulfurization;Wastewater;Heavy metal;Atomic absorption spectrometry;Interference;Taguchi method
引用: Alloway, B., 1995. Heavy metals in soils, 2nd edn. Blackey Academic and Professional. London. Brimblecombe, P., Hammer, C., Rodhe, H., Ryaboshapko, A., Boutron, C.F., 1989. Human influence on the sulphur cycle. Evolution of the global biogeochemical sulphur cycle, 77-121. C D Foy, R L Chaney, a., White, M.C., 1978. The Physiology of Metal Toxicity in Plants. Annual Review of Plant Physiology 29, 511-566. Córdoba, P., 2015. Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel 144, 274-286. Centeno, J.A., Mullick, F.G., Martinez, L., Page, N.P., Gibb, H., Longfellow, D., Thompson, C., Ladich, E.R., 2002. Pathology related to chronic arsenic exposure. Environmental Health Perspectives 110, 883-886. Chen, Y., Lin, G., 2002. 實用內科學. 北京: 人民衛生出版社. Das, P., Samantaray, S., Rout, G.R., 1997. Studies on cadmium toxicity in plants: A review. Environmental Pollution 98, 29-36. Dutré, V., Vandecasteele, C., 1995. Solidification/stabilisation of hazardous arsenic containing waste from a copper refining process. Journal of Hazardous Materials 40, 55-68. Edney, E.O., Kleindienst, T.E., Jaoui, M., Lewandowski, M., Offenberg, J.H., Wang, W., Claeys, M., 2005. Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmospheric Environment 39, 5281-5289. Ito, S., Yokoyama, T., Asakura, K., 2006. Emissions of mercury and other trace elements from coal-fired power plants in Japan. Science of The Total Environment 368, 397-402. Lapham, L.W., Cernichiari, E., Cox, C., Myers, G.J., Baggs, R.B., Brewer, R., Shamlaye, C.F., Davidson, P.W., Clarkson, T.W., 1995. An analysis of autopsy brain tissue from infants prenatally exposed to methymercury. Neurotoxicology 16, 689-704. Lee, C.-G., Song, M.-K., Ryu, J.-C., Park, C., Choi, J.-W., Lee, S.-H., 2016. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent. Chemosphere 153, 1-9. Lee, J.-M., Boyle, E.A., Echegoyen-Sanz, Y., Fitzsimmons, J.N., Zhang, R., Kayser, R.A., 2011. Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry. Analytica Chimica Acta 686, 93-101. Li, H.H., 2011. 田口方法: 品質設計的原理與實務. 高立. Liao, C.-M., Shen, H.-H., Lin, T.-L., Chen, S.-C., Chen, C.-L., Hsu, L.-I., Chen, C.-J., 2008. Arsenic cancer risk posed to human health from tilapia consumption in Taiwan. Ecotoxicology and Environmental Safety 70, 27-37. Milne, A., Landing, W., Bizimis, M., Morton, P., 2010. Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS). Analytica Chimica Acta 665, 200-207. Morel, F.M., 2016. Mechanisms of Hg (II) uptake and methylation in methylating bacteria. Princeton Univ., NJ (United States). Mukhopadhyay, R., Rosen, B.P., Phung, L.T., Silver, S., 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiology Reviews 26, 311-325. Nancharaiah, Y.V., Lens, P.N.L., 2015. Ecology and Biotechnology of Selenium-Respiring Bacteria. Microbiology and Molecular Biology Reviews 79, 61-80. Nwajei, G., Okwagi, P., Nwajei, R., Obi-Iyeke, G., 2012. Analytical assessment of trace elements in soils, tomato leaves and fruits in the vicinity of paint industry, Nigeria. Research Journal of Recent Sciences _____ ISSN 2277, 2502. Otero-Romaní, J., Moreda-Piñeiro, A., Bermejo-Barrera, A., Bermejo-Barrera, P., 2005. Evaluation of commercial C18 cartridges for trace elements solid phase extraction from seawater followed by inductively coupled plasma-optical emission spectrometry determination. Analytica Chimica Acta 536, 213-218. Roels, H., Djubgang, J., Buchet, J.P., Bernard, A., Lauwerys, R., 1982. Evolution of cadmium-induced renal dysfunction in workers removed from exposure. Scandinavian Journal of Work, Environment & Health, 191-200. Srivastava, R.K., Jozewicz, W., 2001. Flue Gas Desulfurization: The State of the Art. Journal of the Air & Waste Management Association 51, 1676-1688. Staessen, J.A., Roels, H.A., Emelianov, D., Kuznetsova, T., Thijs, L., Vangronsveld, J., Fagard, R., 1999. Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. The Lancet 353, 1140-1144. Stranges, S., Marshall, J.R., Natarajan, R., et al., 2007. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: A randomized trial. Annals of Internal Medicine 147, 217-223. Thornton, I., 1992. Sources and pathways of cadmium in the environment. IARC scientific publications, 149-162. Tseng, C.-H., Huang, Y.-K., Huang, Y.-L., Chung, C.-J., Yang, M.-H., Chen, C.-J., Hsueh, Y.-M., 2005. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicology and Applied Pharmacology 206, 299-308. Wu, W., Han, B., Gao, H., Liu, Z., Jiang, T., Huang, J., 2004. Desulfurization of Flue Gas: SO2 Absorption by an Ionic Liquid. Angewandte Chemie International Edition 43, 2415-2417. Xie, R., Seip, H.M., Wibetoe, G., Nori, S., McLeod, C.W., 2006. Heavy coal combustion as the dominant source of particulate pollution in Taiyuan, China, corroborated by high concentrations of arsenic and selenium in PM10. Science of The Total Environment 370, 409-415. Zeng, T., Sarofim, A.F., Senior, C.L., 2001. Vaporization of arsenic, selenium and antimony during coal combustion. Combustion and Flame 126, 1714-1724. Zhang, F.-S., Nriagu, J.O., Itoh, H., 2005. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research 39, 389-395. Zhao, Y., Wang, S., Nielsen, C.P., Li, X., Hao, J., 2010. Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants. Atmospheric Environment 44, 1515-1523. Toxic Substances Portal – Cadmium, Agency for Toxic Substances and Disease Registry, 2008, Toxic Substances Portal – Arsenic, Agency for Toxic Substances and Disease Registry, 2003, Toxic Substances Portal –Selenium, Agency for Toxic Substances and Disease Registry, 2003, Toxic Substances Portal –Mercury, Agency for Toxic Substances and Disease Registry, 1999,
分析及量化含有複雜基質水樣中之重金屬是非常有挑戰性的,尤其是對於燃煤發電廠所產出的尾氣除硫((flue gas desulfurization, FGD)廢水的水樣更是困難,因為不僅背景干擾甚高且多,所需定量之濃度卻相當微量。然而,不久的將來,放流水標準中的燃煤發電廠FGD廢水放流水中砷、硒、鎘與汞將會加嚴至更低的濃度,在這情形下,在重金屬分析量化上的干擾則可能造成更明顯之誤差影響。為解決此種問題,本研究旨在探討對於FGD廢水中干擾重金屬量化的主要因子,以火焰式原子吸收光譜儀(FAAS)搭配氫化裝置分別對於模擬及真實廢水進行分析與探討。為了減少本研究進行實驗的數量,應用田口方法於實驗設計,將欲探討之造成干擾之離子或基團,在高中低不同濃度下之干擾進行探討,此外對於去除干擾之水樣之前處理測試,亦使用此田口方法設計並預測最適合之前處理程序。本研究中探討的因子由產學合作廠商提供之歷史數據中選出,分別為氨氮、硝酸鹽、硫酸鹽、氯鹽、硼、鈣、鈉、鎂等,選用L18(21x37)之田口直交表代入上述可能干擾因子,進行設計後分析其中砷、硒、鎘與汞的濃度。結果顯示主要的影響離子有硝酸鹽、硫酸鹽,為因應此結果,前處理方法則是選用四種前處理方法及三種水準帶入L9(34)田口直交表以找出對於FGD廢水中最佳的前處理程序,在最佳前處理條件、品保品管(QA/QC)及偵測極限上的結果皆呈現一個相當可行之結果,本研究成果可提供相關的方法制訂單位、檢測單位及研究單位一重要參考的依據。

Heavy metal quantification in complex matrix is a very challenging task, especially in flue gas desulfurization (FGD) wastewater from steam power generators. Since the discharge standards on arsenic and selenium will be further tightened to lower ppb levels, the interference can cause significant errors on quantification results. This study investigated the interference of major constituents in FGD wastewater on quantification of the aforementioned heavy metals by flame atomic absorption spectrometry (FAAS) coupled with a hydride generator in both synthetic and real FGD wastewater samples. To minimize the numbers of experiments, Taguchi method was employed to determine the most influential ions or ligands based on the interfering extent as well as effective pretreatment steps that can reduce the interference. Eight major ions or ligands were chosen based on historical records, i.e., ammonia nitrogen, nitrate, sulfate, chloride, boron, calcium, sodium, and magnesium. An orthogonal table L18(21x37) was used to check the interfering strengths of these eight controlling factors on the quantification of arsenic and selenium. The result showed that influential factors are nitrate and sulfate. Furthermore, in this study, four different pretreatment steps with three different levels were tested using an orthogonal table L9(34) to define an optimum pretreatment procedure to reduce the interference on quantifying real FGD wastewater samples. As a result, these pretreatment steps were determined and these heavy metals can be detected consistently in a satisfactory recovery range and all QA/QC parameters such as RSD and method detection limits are satisfactory.
Rights: 同意授權瀏覽/列印電子全文服務,2018-08-21起公開。
Appears in Collections:環境工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105063204-1.pdf1.49 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.