Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/98510
DC FieldValueLanguage
dc.contributor陳德勛zh_TW
dc.contributor.author劉芊懿zh_TW
dc.contributor.authorQian-Yi Liuen_US
dc.contributor.other獸醫病理生物學研究所zh_TW
dc.date2018zh_TW
dc.date.accessioned2019-03-22T06:49:13Z-
dc.identifier.citation2015a. National action plan for combating antibiotic-resistant bacteria. The White House. (https://www.cdc.gov/drugresistance/pdf/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf) 2015b. OIE List of Antimicrobial Agents of Veterinary Importance. (https://www.oie.int/doc/ged/D9840.PDF) Aminov, R.I., 2009. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11, 2970-2988. Ardal, C., Outterson, K., Hoffman, S.J., Ghafur, A., Sharland, M., Ranganathan, N., Smith, R., Zorzet, A., Cohn, J., Pittet, D., Daulaire, N., Morel, C., Rizvi, Z., Balasegaram, M., Dar, O.A., Heymann, D.L., Holmes, A.H., Moore, L.S., Laxminarayan, R., Mendelson, M., Rottingen, J.A., 2016. International cooperation to improve access to and sustain effectiveness of antimicrobials. Lancet 387, 296-307. Arnold, R.S., Thom, K.A., Sharma, S., Phillips, M., Kristie Johnson, J., Morgan, D.J., 2011. Emergence of Klebsiella pneumoniae carbapenemase-producing bacteria. South Med J 104, 40-45. Bakour, S., Olaitan, A.O., Ammari, H., Touati, A., Saoudi, S., Saoudi, K., Rolain, J.M., 2015. Emergence of Colistin- and Carbapenem-Resistant Acinetobacter baumannii ST2 Clinical Isolate in Algeria: First Case Report. Microb Drug Resist 21, 279-285. Baron, S., Hadjadj, L., Rolain, J.M., Olaitan, A.O., 2016. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents 48, 583-591. Bell, B.G., Schellevis, F., Stobberingh, E., Goossens, H., Pringle, M., 2014. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis 14, 13. Beutin, L., 2006. Emerging enterohaemorrhagic Escherichia coli, causes and effects of the rise of a human pathogen. Zoonoses and Public Health 53, 299-305. Bialvaei, A.Z., Samadi Kafil, H., 2015. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin 31, 707-721. Bojkovic, J., Richie, D.L., Six, D.A., Rath, C.M., Sawyer, W.S., Hu, Q., Dean, C.R., 2015. Characterization of an Acinetobacter baumannii lptD Deletion Strain: Permeability Defects and Response to Inhibition of Lipopolysaccharide and Fatty Acid Biosynthesis. J Bacteriol 198, 731-741. Borowiak, M., Fischer, J., Hammerl, J.A., Hendriksen, R.S., Szabo, I., Malorny, B., 2017. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 72, 3317-3324. Boyer, H., 1966. Conjugation in Escherichia coli. J Bacteriol 91, 1767-1772. Campos, J., Cristino, L., Peixe, L., Antunes, P., 2016. MCR-1 in multidrug-resistant and copper-tolerant clinically relevant Salmonella 1,4,[5],12:i:- and S. Rissen clones in Portugal, 2011 to 2015. Euro Surveill 21. Carattoli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K.L., Threlfall, E.J., 2005. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63, 219-228. Carattoli, A., Villa, L., Feudi, C., Curcio, L., Orsini, S., Luppi, A., Pezzotti, G., Magistrali, C.F., 2017. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill 22, 30589. Carnevali, C., Morganti, M., Scaltriti, E., Bolzoni, L., Pongolini, S., Casadei, G., 2016. Occurrence of mcr-1 in Colistin-Resistant Salmonella enterica Isolates Recovered from Humans and Animals in Italy, 2012 to 2015. Antimicrob Agents Chemother 60, 7532-7534. Carretto, E., Brovarone, F., Nardini, P., Russello, G., Barbarini, D., Pongolini, S., Gagliotti, C., Carattoli, A., Sarti, M., 2018. Detection of mcr-4 positive Salmonella enterica serovar Typhimurium in clinical isolates of human origin, Italy, October to November 2016. Euro Surveill 23, 17-00821. CDC, 2009. 醫療照護相關感染監測定義. Tawain Centers for Disease Control. CDC, 2013. Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention. (https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf) CDC, 2018. 台灣院內感染監視資訊系統(TNIS)2017年第3季監視報告. Tawain Centers for Disease Control. (https://www.syndriver.com/portal/#/sharing/bf961ebabd814622afaaa25dddfcdf55) Chambers, J.R., Sauer, K., 2013. The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ. J Bacteriol 195, 4678-4688. Chapman, T.A., Wu, X.Y., Barchia, I., Bettelheim, K.A., Driesen, S., Trott, D., Wilson, M., Chin, J.J., 2006. Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine. Appl Environ Microbiol 72, 4782-4795. Chen, L., Chavda, K.D., Al Laham, N., Melano, R.G., Jacobs, M.R., Bonomo, R.A., Kreiswirth, B.N., 2013. Complete nucleotide sequence of a blaKPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob Agents Chemother 57, 5019-5025. Chen, L., Zhang, J., Wang, J., Butaye, P., Kelly, P., Li, M., Yang, F., Gong, J., Yassin, A.K., Guo, W., Li, J., Song, C., Wang, C., 2018. Newly identified colistin resistance genes, mcr-4 and mcr-5, from upper and lower alimentary tract of pigs and poultry in China. PLoS One 13, e0193957. Chen, P.A., Hung, C.H., Huang, P.C., Chen, J.R., Huang, I.F., Chen, W.L., Chiou, Y.H., Hung, W.Y., Wang, J.L., Cheng, M.F., 2016. Characteristics of CTX-M Extended-Spectrum beta-Lactamase-Producing Escherichia coli Strains Isolated from Multiple Rivers in Southern Taiwan. Appl Environ Microbiol 82, 1889-1897. Chiou, C.S., Chen, Y.T., Wang, Y.W., Liu, Y.Y., Kuo, H.C., Tu, Y.H., Lin, A.C., Liao, Y.S., Hong, Y.P., 2017. Dissemination of mcr-1-Carrying Plasmids among Colistin-Resistant Salmonella Strains from Humans and Food-Producing Animals in Taiwan. Antimicrob Agents Chemother 61, e00338-00317. CLSI 2015. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard—Tenth. Edition. CLSI document M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute. CLSI 2017. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute. Conedera, G., Mattiazzi, E., Russo, F., Chiesa, E., Scorzato, I., Grandesso, S., Bessegato, A., Fioravanti, A., Caprioli, A., 2007. A family outbreak of Escherichia coli O157 haemorrhagic colitis caused by pork meat salami. Epidemiol Infect 135, 311-314. Damborg, P., Sorensen, A.H., Guardabassi, L., 2008. Monitoring of antimicrobial resistance in healthy dogs: first report of canine ampicillin-resistant Enterococcus faecium clonal complex 17. Vet Microbiol 132, 190-196. Denervaud Tendon, V., Poirel, L., Nordmann, P., 2017. Transferability of the mcr-1 Colistin Resistance Gene. Microb Drug Resist 23, 813-814. dos Santos, L.F., Goncalves, E.M., Vaz, T.M., Irino, K., Guth, B.E., 2007. Distinct pathotypes of O113 Escherichia coli strains isolated from humans and animals in Brazil. J Clin Microbiol 45, 2028-2030. ECAUST 2016. Recommendations for MIC determination of colistin (polymyxin E) As recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. (http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf) ECAUST 2017. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 7.0. (http://www.eucast.org) Eriksson, E., Nerbrink, E., Borch, E., Aspan, A., Gunnarsson, A., 2003. Verocytotoxin-producing Escherichia coli O157:H7 in the Swedish pig population. Vet Rec 152, 712-717. Falkow, S., Kennedy, D., 2001. Antibiotics, animals, and people--again! Science 291, 397. Formosa, C., Herold, M., Vidaillac, C., Duval, R.E., Dague, E., 2015. Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy. J Antimicrob Chemother 70, 2261-2270. Fukuda, A., Sato, T., Shinagawa, M., Takahashi, S., Asai, T., Yokota, S.I., Usui, M., Tamura, Y., 2018. High prevalence of mcr-1, mcr-3 and mcr-5 in Escherichia coli derived from diseased pigs in Japan. Int J Antimicrob Agents 51, 163-164. Galland, J.C., Hyatt, D.R., Crupper, S.S., Acheson, D.W., 2001. Prevalence, antibiotic susceptibility, and diversity of Escherichia coli O157:H7 isolates from a longitudinal study of beef cattle feedlots. Appl Environ Microbiol 67, 1619-1627. Gao, R., Hu, Y., Li, Z., Sun, J., Wang, Q., Lin, J., Ye, H., Liu, F., Srinivas, S., Li, D., Zhu, B., Liu, Y.H., Tian, G.B., Feng, Y., 2016. Dissemination and Mechanism for the MCR-1 Colistin Resistance. PLoS Pathog 12, e1005957. Garcia, V., Garcia-Menino, I., Mora, A., Flament-Simon, S.C., Diaz-Jimenez, D., Blanco, J.E., Alonso, M.P., Blanco, J., 2018. Co-occurrence of mcr-1, mcr-4 and mcr-5 genes in multidrug-resistant ST10 Enterotoxigenic and Shiga toxin-producing Escherichia coli in Spain (2006-2017). Int J Antimicrob Agents 52, 104-108. Groundwater, P.W., Xu, S., Lai, F., Varadi, L., Tan, J., Perry, J.D., Hibbs, D.E., 2016. New Delhi metallo-beta-lactamase-1: structure, inhibitors and detection of producers. Future Med Chem 8, 993-1012. Hancock, R.E., Chapple, D.S., 1999. Peptide antibiotics. Antimicrob Agents Chemother 43, 1317-1323. Hashizume, T., Ishino, F., Nakagawa, J., Tamaki, S., Matsuhashi, M., 1984. Studies on the mechanism of action of imipenem (N-formimidoylthienamycin) in vitro: binding to the penicillin-binding proteins (PBPs) in Escherichia coli and Pseudomonas aeruginosa, and inhibition of enzyme activities due to the PBPs in E. coli. J Antibiot (Tokyo) 37, 394-400. Health, W.O.f.A. 2015. OIE List of Antimicrobial Agents of Veterinary Importance (OIE-World Organization for Animal Health Paris). Hood, M.I., Jacobs, A.C., Sayood, K., Dunman, P.M., Skaar, E.P., 2010. Acinetobacter baumannii increases tolerance to antibiotics in response to monovalent cations. Antimicrob Agents Chemother 54, 1029-1041. James, G. 2010. Universal bacterial identification by PCR and DNA sequencing of 16S rRNA gene, In: PCR for clinical microbiology. Springer, 209-214. Jay, M.T., Cooley, M., Carychao, D., Wiscomb, G.W., Sweitzer, R.A., Crawford-Miksza, L., Farrar, J.A., Lau, D.K., O'Connell, J., Millington, A., 2007. Escherichia coli O157: H7 in feral swine near spinach fields and cattle, central California coast. Emerging infectious diseases 13, 1908. Johnson, T.J., Bielak, E.M., Fortini, D., Hansen, L.H., Hasman, H., Debroy, C., Nolan, L.K., Carattoli, A., 2012. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 68, 43-50. Kawanishi, M., Abo, H., Ozawa, M., Uchiyama, M., Shirakawa, T., Suzuki, S., Shima, A., Yamashita, A., Sekizuka, T., Kato, K., Kuroda, M., Koike, R., Kijima, M., 2017. Prevalence of Colistin Resistance Gene mcr-1 and Absence of mcr-2 in Escherichia coli Isolated from Healthy Food-Producing Animals in Japan. Antimicrob Agents Chemother 61, e02057-02016. Keen, J.E., Wittum, T.E., Dunn, J.R., Bono, J.L., Durso, L.M., 2006. Shiga-toxigenic Escherichia coli O157 in agricultural fair livestock, United States. Emerging infectious diseases 12, 780. Keo, T., Collins, J., Kunwar, P., Blaser, M.J., Iovine, N.M., 2011. Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. Virulence 2, 30-40. Khan, A.U., Maryam, L., Zarrilli, R., 2017. Structure, Genetics and Worldwide Spread of New Delhi Metallo-beta-lactamase (NDM): a threat to public health. BMC Microbiol 17, 101. Khan, A.U., Nordmann, P., 2012. NDM-1-producing Enterobacter cloacae and Klebsiella pneumoniae from diabetic foot ulcers in India. J Med Microbiol 61, 454-456. Kieffer, N., Poirel, L., Nordmann, P., Madec, J.Y., Haenni, M., 2015. Emergence of colistin resistance in Klebsiella pneumoniae from veterinary medicine. J Antimicrob Chemother 70, 1265-1267. Kim, Y., Bae, I.K., Jeong, S.H., Yong, D., Lee, K., 2015. In Vivo Selection of Pan-Drug Resistant Acinetobacter baumannii during Antibiotic Treatment. Yonsei Med J 56, 928-934. Kisiela, D., Kuczkowski, M., Kiczak, L., Wieliczko, A., Ugorski, M., 2005. Differentiation of Salmonella Gallinarum biovar Gallinarum from Salmonella Gallinarum biovar Pullorum by PCR‐RFLP of the fimH gene. J Vet Med B Infect Dis Vet Public Health 52, 214-218. Kock, R., Daniels-Haardt, I., Becker, K., Mellmann, A., Friedrich, A.W., Mevius, D., Schwarz, S., Jurke, A., 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 18, 30339-2. Kuo, S.C., Huang, W.C., Wang, H.Y., Shiau, Y.R., Cheng, M.F., Lauderdale, T.L., 2016. Colistin resistance gene mcr-1 in Escherichia coli isolates from humans and retail meats, Taiwan. J Antimicrob Chemother 71, 2327-2329. Kusumoto, M., Ogura, Y., Gotoh, Y., Iwata, T., Hayashi, T., Akiba, M., 2016. Colistin-Resistant mcr-1-Positive Pathogenic Escherichia coli in Swine, Japan, 2007-2014. Emerg Infect Dis 22, 1315-1317. Lai, C.-C., Ding, L.-W., Hsueh, P.-R., 2007. Wound infection and septic shock due to Aeromonas trota in a patient with liver cirrhosis. Clinical infectious diseases 44, 1523-1524. Lee, J.Y., Ko, K.S., 2014. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis 78, 271-276. Liebana, E., Carattoli, A., Coque, T.M., Hasman, H., Magiorakos, A.P., Mevius, D., Peixe, L., Poirel, L., Schuepbach-Regula, G., Torneke, K., Torren-Edo, J., Torres, C., Threlfall, J., 2013. Public health risks of enterobacterial isolates producing extended-spectrum beta-lactamases or AmpC beta-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56, 1030-1037. Ling, Z., Yin, W., Li, H., Zhang, Q., Wang, X., Wang, Z., Ke, Y., Wang, Y., Shen, J., 2017. Chromosome-mediated mcr-3 variants in Aeromonas veronii from chicken meat. Antimicrobial agents and chemotherapy 61, e01272-01217. Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J.H., Shen, J., 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16, 161-168. Lo-Ten-Foe, J.R., de Smet, A.M., Diederen, B.M., Kluytmans, J.A., van Keulen, P.H., 2007. Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrob Agents Chemother 51, 3726-3730. Ma, S., Sun, C., Hulth, A., Li, J., Nilsson, L.E., Zhou, Y., Borjesson, S., Bi, Z., Bi, Z., Sun, Q., Wang, Y., 2018. Mobile colistin resistance gene mcr-5 in porcine Aeromonas hydrophila. J Antimicrob Chemother. Maifiah, M.H., Cheah, S.E., Johnson, M.D., Han, M.L., Boyce, J.D., Thamlikitkul, V., Forrest, A., Kaye, K.S., Hertzog, P., Purcell, A.W., Song, J., Velkov, T., Creek, D.J., Li, J., 2016. Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii. Sci Rep 6, 22287. Martinez-Martinez, L., 2008. Extended-spectrum beta-lactamases and the permeability barrier. Clin Microbiol Infect 14 Suppl 1, 82-89. Matamoros, S., van Hattem, J.M., Arcilla, M.S., Willemse, N., Melles, D.C., Penders, J., Vinh, T.N., Thi Hoa, N., consortium, C., de Jong, M.D., Schultsz, C., 2017. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci Rep 7, 15364. Mateus, A., Brodbelt, D.C., Barber, N., Stark, K.D., 2011. Antimicrobial usage in dogs and cats in first opinion veterinary practices in the UK. J Small Anim Pract 52, 515-521. Matsuzaki, K., 1999. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462, 1-10. McDonald, L.C., Lauderdale, T.-L., Shiau, Y.-R., Chen, P.-C., Lai, J.-F., Wang, H.-Y., Ho, M., 2004. The status of antimicrobial resistance in Taiwan among Gram-positive pathogens: the Taiwan Surveillance of Antimicrobial Resistance (TSAR) programme, 2000. Int J Antimicrob Agents 23, 362-370. Mendelson, M., Rottingen, J.A., Gopinathan, U., Hamer, D.H., Wertheim, H., Basnyat, B., Butler, C., Tomson, G., Balasegaram, M., 2016. Maximising access to achieve appropriate human antimicrobial use in low-income and middle-income countries. Lancet 387, 188-198. Moffatt, J.H., Harper, M., Harrison, P., Hale, J.D., Vinogradov, E., Seemann, T., Henry, R., Crane, B., St Michael, F., Cox, A.D., Adler, B., Nation, R.L., Li, J., Boyce, J.D., 2010. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54, 4971-4977. Monstein, H.J., Ostholm-Balkhed, A., Nilsson, M.V., Nilsson, M., Dornbusch, K., Nilsson, L.E., 2007. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 115, 1400-1408. Naas, T., Nordmann, P., 1994. Analysis of a carbapenem-hydrolyzing class A beta-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc Natl Acad Sci U S A 91, 7693-7697. Nakazawa, M., Akiba, M., Sameshima, T., 1999. Swine as a potential reservoir of Shiga toxin-producing Escherichia coli O157: H7 in Japan. Emerg Infect Dis 5, 833. Nordmann, P., Cuzon, G., Naas, T., 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9, 228-236. Nordmann, P., Dortet, L., Poirel, L., 2012. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18, 263-272. O'Neill, J., 2016. Tackling Drug-Resistant Infections Globally: final report and recommendations. Review on Antimicrobial Resistance. (https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf) Olaitan, A.O., Dia, N.M., Gautret, P., Benkouiten, S., Belhouchat, K., Drali, T., Parola, P., Brouqui, P., Memish, Z., Raoult, D., Rolain, J.M., 2015. Acquisition of extended-spectrum cephalosporin- and colistin-resistant Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj. Int J Antimicrob Agents 45, 600-604. Olaitan, A.O., Morand, S., Rolain, J.M., 2014. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5, 643. Oliver, A., Levin, B.R., Juan, C., Baquero, F., Blazquez, J., 2004. Hypermutation and the preexistence of antibiotic-resistant Pseudomonas aeruginosa mutants: implications for susceptibility testing and treatment of chronic infections. Antimicrob Agents Chemother 48, 4226-4233. Papp-Wallace, K.M., Endimiani, A., Taracila, M.A., Bonomo, R.A., 2011. Carbapenems: past, present, and future. Antimicrob Agents Chemother 55, 4943-4960. Park, Y.K., Lee, J.Y., Ko, K.S., 2015. Transcriptomic analysis of colistin-susceptible and colistin-resistant isolates identifies genes associated with colistin resistance in Acinetobacter baumannii. Clin Microbiol Infect 21, 765 e761-767. Patel, G., Huprikar, S., Factor, S.H., Jenkins, S.G., Calfee, D.P., 2008. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 29, 1099-1106. Paterson, D.L., Bonomo, R.A., 2005. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18, 657-686. Poirel, L., Kieffer, N., Fernandez-Garayzabal, J.F., Vela, A.I., Larpin, Y., Nordmann, P., 2017. MCR-2-mediated plasmid-borne polymyxin resistance most likely originates from Moraxella pluranimalium. J Antimicrob Chemother 72, 2947-2949. Poirel, L., Walsh, T.R., Cuvillier, V., Nordmann, P., 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70, 119-123. Queenan, A.M., Shang, W., Flamm, R., Bush, K., 2010. Hydrolysis and inhibition profiles of beta-lactamases from molecular classes A to D with doripenem, imipenem, and meropenem. Antimicrob Agents Chemother 54, 565-569. Qureshi, Z.A., Hittle, L.E., O'Hara, J.A., Rivera, J.I., Syed, A., Shields, R.K., Pasculle, A.W., Ernst, R.K., Doi, Y., 2015. Colistin-resistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis 60, 1295-1303. Radford, A.D., Noble, P.J., Coyne, K.P., Gaskell, R.M., Jones, P.H., Bryan, J.G., Setzkorn, C., Tierney, A., Dawson, S., 2011. Antibacterial prescribing patterns in small animal veterinary practice identified via SAVSNET: the small animal veterinary surveillance network. Vet Rec 169, 310. Rahn, K., De Grandis, S.A., Clarke, R.C., McEwen, S.A., Galan, J.E., Ginocchio, C., Curtiss, R., 3rd, Gyles, C.L., 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6, 271-279. Rebelo, A.R., Bortolaia, V., Kjeldgaard, J.S., Pedersen, S.K., Leekitcharoenphon, P., Hansen, I.M., Guerra, B., Malorny, B., Borowiak, M., Hammerl, J.A., Battisti, A., Franco, A., Alba, P., Perrin-Guyomard, A., Granier, S.A., De Frutos Escobar, C., Malhotra-Kumar, S., Villa, L., Carattoli, A., Hendriksen, R.S., 2018. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill 23. Rhomberg, P.R., Jones, R.N., 2009. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10-year experience in the United States (1999-2008). Diagn Microbiol Infect Dis 65, 414-426. Roschanski, N., Falgenhauer, L., Grobbel, M., Guenther, S., Kreienbrock, L., Imirzalioglu, C., Roesler, U., 2017. Retrospective survey of mcr-1 and mcr-2 in German pig-fattening farms, 2011-2012. Int J Antimicrob Agents 50, 266-271. Rwego, I.B., Gillespie, T.R., Isabirye-Basuta, G., Goldberg, T.L., 2008. High rates of Escherichia coli transmission between livestock and humans in rural Uganda. J Clin Microbiol 46, 3187-3191. Scott Weese, J., 2008. Antimicrobial resistance in companion animals. Anim Health Res Rev 9, 169-176. Selasi, G.N., Nicholas, A., Jeon, H., Lee, Y.C., Yoo, J.R., Heo, S.T., Lee, J.C., 2015. Genetic basis of antimicrobial resistance and clonal dynamics of carbapenem-resistant Acinetobacter baumannii sequence type 191 in a Korean hospital. Infect Genet Evol 36, 1-7. Shen, Z., Wang, Y., Shen, Y., Shen, J., Wu, C., 2016. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis 16, 293. Sorum, H., Sunde, M., 2001. Resistance to antibiotics in the normal flora of animals. Vet Res 32, 227-241. Spinosa, M.R., Progida, C., Tala, A., Cogli, L., Alifano, P., Bucci, C., 2007. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun 75, 3594-3603. Srinivasan, V.B., Rajamohan, G., 2013. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 57, 4449-4462. Sun, J., Xu, Y., Gao, R., Lin, J., Wei, W., Srinivas, S., Li, D., Yang, R.S., Li, X.P., Liao, X.P., Liu, Y.H., Feng, Y., 2017. Deciphering MCR-2 Colistin Resistance. MBio 8, e00625-17. Taylor, L.H., Latham, S.M., Woolhouse, M.E., 2001. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356, 983-989. Thomson, K.S., 2010. Extended-spectrum-beta-lactamase, AmpC, and Carbapenemase issues. J Clin Microbiol 48, 1019-1025. Tilden Jr, J., Young, W., McNamara, A.-M., Custer, C., Boesel, B., Lambert-Fair, M.A., Majkowski, J., Vugia, D., Werner, S., Hollingsworth, J., 1996. A new route of transmission for Escherichia coli: infection from dry fermented salami. Am J Public Health 86, 1142-1145. Trabulsi, L.R., Keller, R., Tardelli Gomes, T.A., 2002. Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 8, 508-513. Tzouvelekis, L.S., Markogiannakis, A., Psichogiou, M., Tassios, P.T., Daikos, G.L., 2012. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25, 682-707. van Dam, V., Olrichs, N., Breukink, E., 2009. Specific labeling of peptidoglycan precursors as a tool for bacterial cell wall studies. Chembiochem 10, 617-624. VDPAM, I.S.U. 2017. Antimicrobial Susceptibility Profiles (https://vetmed.iastate.edu/vdpam/research/disease-topics/bacterial-susceptibility-profiles). Wand, M.E., Bock, L.J., Bonney, L.C., Sutton, J.M., 2015. Retention of virulence following adaptation to colistin in Acinetobacter baumannii reflects the mechanism of resistance. J Antimicrob Chemother 70, 2209-2216. Wang, Y., Zhang, R., Li, J., Wu, Z., Yin, W., Schwarz, S., Tyrrell, J.M., Zheng, Y., Wang, S., Shen, Z., Liu, Z., Liu, J., Lei, L., Li, M., Zhang, Q., Wu, C., Zhang, Q., Wu, Y., Walsh, T.R., Shen, J., 2017. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2, 16260. Wayne, A., McCarthy, R., Lindenmayer, J., 2011. Therapeutic antibiotic use patterns in dogs: observations from a veterinary teaching hospital. J Small Anim Pract 52, 310-318. Wu, R., Yi, L.X., Yu, L.F., Wang, J., Liu, Y., Chen, X., Lv, L., Yang, J., Liu, J.H., 2018. Fitness Advantage of mcr-1-Bearing IncI2 and IncX4 Plasmids in Vitro. Front Microbiol 9, 331. Xavier, B.B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H., Malhotra-Kumar, S., 2016. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill 21. Yigit, H., Queenan, A.M., Anderson, G.J., Domenech-Sanchez, A., Biddle, J.W., Steward, C.D., Alberti, S., Bush, K., Tenover, F.C., 2001. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45, 1151-1161. Yin, W., Li, H., Shen, Y., Liu, Z., Wang, S., Shen, Z., Zhang, R., Walsh, T.R., Shen, J., Wang, Y., 2017. Novel Plasmid-Mediated Colistin Resistance Gene mcr-3 in Escherichia coli. MBio 8, e00543-17. Yong, D., Toleman, M.A., Giske, C.G., Cho, H.S., Sundman, K., Lee, K., Walsh, T.R., 2009. Characterization of a new metallo-beta-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53, 5046-5054. Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-395. 蔡文城和何梅純, 2006. GNB-14電腦密碼鑑定系統. 九州圖書.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/98510-
dc.description.abstract多重抗藥性細菌已在全球皆有發現會引起嚴重院內感染,在治療與控制上皆不易,且死亡率高。黏菌素是對抗革蘭氏陰性菌的最後一線藥物之一,特別是針對碳青黴烯類抗生素抗藥性的腸桿菌科所引起人類院內感染症的治療。但在2015年,中國首次發現質體介導黏菌素抗藥基因 (mcr-1),隨後在超過30個國家不論是野生動物、人類或食物上皆有陸續發現,其中包括台灣。 台灣地區對於動物來源的質體介導黏菌素抗藥基因相關文獻十分稀少,而本研究主要目的是調查台灣產食經濟動物、野生動物及伴侶動物所分離之臨床分離株mcr-1的盛行率及抗藥性概況。本試驗樣品來自國立中興大學獸醫學院動物疾病診斷中心2016年1月至2017年6月及國立中興大學獸醫教學醫院2016年1月至2017年4月的臨床分離株檢測其黏菌素抗藥基因,共蒐集了247個不重複的革蘭氏陰性菌臨床分離株,檢測全部分離株是否帶有質體介導黏菌素抗藥基因,其中包括了mcr-1、mcr-2、mcr-3、mcr-4及mcr-5。結果顯示從豬隻、家禽、野生動物及伴侶動物對於黏菌素抗藥的比例分別為33% (42/126)、43% (20/47)、24.3% (9/34)及8% (3/37),而mcr-1之陽性率分別為27.0% (34/126)、21.3% (10/47)、8% (3/37)及2.7% (1/37)。另外,在3株來自豬隻分離株以及1株來自家禽分離株檢測出mcr-3陽性,而同時帶有mcr-1及mcr-3的分離株有3株在豬隻及家禽皆有分離到,而mcr-2、mcr-4及mcr-5並沒有在任何分離株所檢測到。 對48株mcr-1陽性的革蘭氏陰性菌,其中包括了45株大腸桿菌與Aeromonas trota、Acinetobacter baumannii及Salmonella Enteritidis各一株,去除了A. trota,深入探討發現全部mcr-1陽性分離株對於黏菌素、ampicillin及tetracycline都具有抗藥性,90%以上對於trimethoprim-sulfamethoxazole及第一代頭孢子素抗生素 (cefazolin) 具有抗藥性,及35.4%之mcr-1陽性菌株會產生廣效性乙內醯胺酶。幸運的是,藥物感受性試驗中,imipenem或meropenem對於全部mcr-1陽性多重抗藥革蘭氏陰性菌皆成具有感受性,對於帶有mcr-1的質體做進一步分析發現質體屬於IncI2及IncX4,分別占43.8%及25%,但並沒有偵測到IncHI2的存在。 根據本研究,首次在台灣檢測到mcr-3陽性,且mcr-1抗藥基因在產食經濟動物分離出的大腸桿菌臨床分離株所檢測到的比例較高,可能原因是在牧場動物飼養上黏菌素的使用太頻繁,因此額外的抗生素管理計畫應持續做監控。zh_TW
dc.description.abstractBacteria with multiple drug resistance emerges globally and causes serious nosocomial infections. It is difficult to treat and control, and causes high mortality. Colistin is one of the last-resort antibiotic against most gram-negative bacteria especially carbapenem-resistance Enterobacteriaceae in treatment of human beings. In 2015, a plasmid-mediated colistin resistance gene (mcr-1) was reported for the first time in China. Also, it has been found in wildlife, humans and food over than 30 countries, including Taiwan. Researches of plasmid-mediated colistin resistance gene from animals were few in Taiwan. This study aimed to investigate the prevalence of mcr-1 positive gram-negative isolates and overview of antibiotic resistance in clinical isolates from livestocks, wildlife and companion animals in Taiwan. Here we have screened colistin resistance gene in the clinical isolates from both the Animal Disease Diagnostic Center, College of Veterinary Medicine, and National Chung Hsing University from January 2016 to June 2017 and from National Chung Hsing University College of Veterinary Medicine from January 2016 to April 2017. We have collected 247 non-duplicate gram-negative clinical isolates. Screen all sample for plasmid-mediated colistin resistance gene (mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5). Our result showed that rate of colistin resistance from swine, poultry, wildlife and companion animal were 33% (42/126), 43% (20/47), 24.3% (9/34) and 8% (3/37) and prevalence rate of mcr-1 were 27.0% (34/126), 21.3% (10/47), 8% (3/37) and 2.7% (1/37), respectively. Also, mcr-3 was detected in 3 isolates from swine and 1 isolate from poultry. Coexistence of mcr-1 and mcr-3 (1%, three isolates) was observed from both swine and poultry. The mcr-2, mcr-4 and mcr-5 genes were not detected in any samples. There were 48 gram-negative isolates with mcr-1, including 45 isolates of E. coli, 1 isolates of Aeromonas trota, Acinetobacter baumannii and Salmonella Enteritidis. Except A. trota, all mcr-1 positive isolates were resistant to colistin, ampicillin and tetracycline, and more than 90% resistance to trimethoprim-sulfamethoxazole and first generation cephalosporin. 35.4% mcr-1 positive isolates were ESBLs producer. Fortunately, we found that all mcr-1-positive multidrug-resistant gram-negative isolates were susceptible for imipenem or meropenem. We futher investigated type of mcr-1-carrying plasmid belonged to IncI2 and IncX4, respectively 43.8% and 25%. IncHI2 plasmid type was not detected in any isolate. According to our result, this is first report to present of mcr-3 in Taiwan, and percentage of mcr-1 gene detected in E. coli from farm animals was high. The likely cause is that the usage of colistin for livestock is more often. Therefore, additional antibiotic stewardship program should keep monitoring.en_US
dc.description.tableofcontents摘要 ……………………………………………………………………………i Abstract ……………………………………………………………………………ii 目錄 ………………………………………………………………………………iii 表目次 ……………………………………………………………………………v 圖目次 …………………………………………………………………………v 第一章 文獻探討…………………………………………………………………1 第一節 多重抗藥性細菌………………………………………………………1 第二節 對碳青黴烯類抗生素抗藥性的腸桿菌科……………………………2 第三節 多黏菌素E之介紹……………………………………………………5 第四節 質體介導黏菌素抗藥性基因…………………………………………7 第五節 抗生素投予於動物之影響……………………………………………9 第六節 研究動機與目的………………………………………………………11 第二章 材料與方法…………………………………………………………………13 第一節 研究樣本來源………………………………………………………13 第二節 菌種鑑定及抗生素敏感性試驗………………………………………13 第三節 抗藥性基因檢測………………………………………………………15 第四節 黏菌素抗藥基因之序列分析…………………………16 第五節 細菌接合作用…………………………………………………………16 第六節 質體構型之分型………………………………………………………17 第七節 E. coli之毒素基因檢測…….…………………………………………18 第三章 實驗結果……………………………………………………………………19 第一節 菌株來源動物感染症之統計結果……………………………………19 第二節 革蘭性陰性菌分離株對黏菌素之感受性………………………….20 第三節 臨床分離株對於碳青黴烯類抗生素感受性與抗藥基因之陽性率…20 第四節 臨床分離株對於黏菌素抗藥基因之陽性率與基因序列比對結果…………………………………………………………………….…20 第五節 質體介導黏菌素抗藥基因序列比對結果………….….………..……21 第六節 mcr-1質體構型分型及分布……………………………………….…21 第七節 mcr-1陽性分離株之抗生素敏感性……………………….…….……21 第八節 帶有mcr-1與ESBL的分離株之檢驗結果…………………………22 第九節 mcr-1陽性E. coli之毒素基因………………………………………22 第四章 討論…………………………………………………………………………23 參考文獻………………………………………………………………………27 附錄………………………………………………………………………56zh_TW
dc.language.isozh_TWzh_TW
dc.rights不同意授權瀏覽/列印電子全文服務zh_TW
dc.subjectmcr-1zh_TW
dc.subjectmcr-3zh_TW
dc.subject碳青黴烯類抗生素抗藥性zh_TW
dc.subjectmcr-1en_US
dc.subjectmcr-3en_US
dc.subjectCarbapenem resistanceen_US
dc.title台灣動物臨床分離株對黏菌素與碳青黴烯類抗生素抗藥性之流行病學研究zh_TW
dc.titleEpidemiology of Resistance to Colistin or Carbapenems in Clinical Isolates from Animals in Taiwanen_US
dc.typethesis and dissertationen_US
dc.date.paperformatopenaccess2021-08-29zh_TW
dc.date.openaccess10000-01-01-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1zh_TW-
item.openairetypethesis and dissertation-
item.grantfulltextrestricted-
item.fulltextwith fulltext-
item.cerifentitytypePublications-
Appears in Collections:獸醫病理生物學所
Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105047202-1.pdf1.61 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.