Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/98529
標題: | 副痘病毒在鼻咽癌及犬乳腺腫瘤細胞的溶瘤角色 The Oncolytic Role of Parapoxvirus on Nasopharyngeal Carcinoma Cells and Canine Mammary Tumor Cells |
作者: | 鄭茜尹 Chien-I Cheng |
關鍵字: | 溶瘤療法;ORF病毒;鼻咽癌;犬乳腺腫瘤;oncolytic therapy;orf virus;nasopharyngeal cell carcinoma;canine mammary gland tumor | 引用: | Al-Dissi, A.N., Haines, D.M., Singh, B., Kidney, B.A., 2010. Immunohistochemical expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 in canine simple mammary gland adenocarcinomas. The Canadian Veterinary Journal 51, 1109. Autio, K., Knuuttila, A., Kipar, A., Ahonen, M., Parviainen, S., Diaconu, I., Kanerva, A., Hakonen, T., Vähä‐Koskela, M., Hemminki, A., 2016. Anti‐tumour activity of oncolytic Western Reserve vaccinia viruses in canine tumour cell lines, xenografts, and fresh tumour biopsies. Veterinary and comparative oncology 14, 395-408. Autio, K.P., Ruotsalainen, J.J., Anttila, M.O., Niittykoski, M., Waris, M., Hemminki, A., Vähä-Koskela, M.J., Hinkkanen, A.E., 2015. Attenuated Semliki Forest virus for cancer treatment in dogs: safety assessment in two laboratory Beagles. BMC veterinary research 11, 170. Baujat, B., Audry, H., Bourhis, J., Chan, A.T., Onat, H., Chua, D.T., Kwong, D.L., Al-Sarraf, M., Chi, K.-H., Hareyama, M., 2006. Chemotherapy in locally advanced nasopharyngeal carcinoma: an individual patient data meta-analysis of eight randomized trials and 1753 patients. International Journal of Radiation Oncology• Biology• Physics 64, 47-56. Benencia, F., Courrèges, M.C., Conejo-García, J.R., Mohamed-Hadley, A., Zhang, L., Buckanovich, R.J., Carroll, R., Fraser, N., Coukos, G., 2005. HSV oncolytic therapy upregulates interferon-inducible chemokines and recruits immune effector cells in ovarian cancer. Molecular Therapy 12, 789-802. Bischoff, J.R., Kirn, D.H., Williams, A., Heise, C., Horn, S., Muna, M., Ng, L., Nye, J.A., Sampson-Johannes, A., Fattaey, A., 1996. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373-376. Blanco-Aparicio, C., Renner, O., Leal, J.F., Carnero, A., 2007. PTEN, more than the AKT pathway. Carcinogenesis 28, 1379-1386. Brooks, L., Yao, Q., Rickinson, A., Young, L., 1992. Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. Journal of virology 66, 2689-2697. Burris, H.A., 3rd, 2013. Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemotherapy and Pharmacology 71, 829-842. Cantley, L.C., Neel, B.G., 1999. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proceedings of the National Academy of Sciences 96, 4240-4245. Chan, W.M., McFadden, G., 2014. Oncolytic poxviruses. Annual review of virology 1, 191-214. Chang, S.-C., Chang, C.-C., Chang, T.-J., Wong, M.-L., 2005. Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998–2002). Journal of the American Veterinary Medical Association 227, 1625-1629. Chen, C., Liu, H., Chao, M., Liang, Y., Tsang, N., Huang, H., Wu, C., Chang, Y., 2014. NF-κB-mediated transcriptional upregulation of TNFAIP2 by the Epstein–Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma. Oncogene 33, 3648. Chen, X., Zhao, M., Hao, M., Sun, X., Wang, J., Mao, Y., Zu, L., Liu, J., Shen, Y., Wang, J., 2013. Dual inhibition of PI3K and mTOR mitigates compensatory AKT activation and improves tamoxifen response in breast cancer. Molecular Cancer Research 11, 1269-1278. Choi, A.H., O'Leary, M.P., Chaurasiya, S., Lu, J., Kim, S.-I., Fong, Y., Chen, N.G., 2018a. Novel chimeric parapoxvirus CF189 as an oncolytic immunotherapy in triple-negative breast cancer. Surgery 163, 336-342. Choi, A.H., O'Leary, M.P., Lu, J., Kim, S.-I., Fong, Y., Chen, N.G., 2018b. Endogenous Akt Activity Promotes Virus Entry and Predicts Efficacy of Novel Chimeric Orthopoxvirus in Triple-Negative Breast Cancer. Molecular Therapy Oncolytics 9, 22-29. Cicenas, J., 2008. The potential role of Akt phosphorylation in human cancers. The International journal of biological markers 23, 1-9. Creighton, C.J., Fu, X., Hennessy, B.T., Casa, A.J., Zhang, Y., Gonzalez-Angulo, A.M., Lluch, A., Gray, J.W., Brown, P.H., Hilsenbeck, S.G., 2010. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast cancer research 12, R40. De las Mulas, J.M., Ordás, J., Millán, Y., Fernández-Soria, V., y Cajal, S.R., 2003. Oncogene HER-2 in canine mammary gland carcinomas. Breast cancer research and treatment 80, 363-367. De Palma, M., Venneri, M.A., Naldini, L., 2003. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Human gene therapy 14, 1193-1206. Diehl, N., Schaal, H., 2013. Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses 5, 3192-3212. Dobbelstein, M., 2004. Replicating adenoviruses in cancer therapy, In: Adenoviruses: Model and Vectors in Virus-Host Interactions. Springer, pp. 291-334. Dobson, J., Samuel, S., Milstein, H., Rogers, K., Wood, J., 2002. Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. Journal of small animal practice 43, 240-246. Dock, G., 1904. The influence of complicating diseases upon leukaemia. The American Journal of the Medical Sciences 127, 563-592. Doepker, M.P., Zager, J.S., 2016. An update on talimogene laherparepvec. American Journal of Hematology and Oncology 12. Egenvall, A., Bonnett, B.N., Öhagen, P., Olson, P., Hedhammar, Å., von Euler, H., 2005. Incidence of and survival after mammary tumors in a population of over 80,000 insured female dogs in Sweden from 1995 to 2002. Preventive veterinary medicine 69, 109-127. Eierhoff, T., Hrincius, E.R., Rescher, U., Ludwig, S., Ehrhardt, C., 2010. The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLoS pathogens 6, e1001099. Erhard, H., Rietveld, F., Bröcker, E., Ruiter, D.J., 1997. Transition of horizontal to vertical growth phase melanoma is accompanied by induction of vascular endothelial growth factor expression and angiogenesis. Melanoma research 7, S19-26. Erovic, B.M., Pelzmann, M., Grasl, M.C., Pammer, J., Kornek, G., Brannath, W., Selzer, E., Thurnher, D., 2005. Mcl-1, vascular endothelial growth factor-R2, and 14-3-3σ expression might predict primary response against radiotherapy and chemotherapy in patients with locally advanced squamous cell carcinomas of the head and neck. Clinical cancer research 11, 8632-8636. Fan, F., Schimming, A., Jaeger, D., Podar, K., 2012. Targeting the tumor microenvironment: focus on angiogenesis. Journal of oncology 2012. Fischer, T., Planz, O., Stitz, L., Rziha, H.-J., 2003. Novel recombinant parapoxvirus vectors induce protective humoral and cellular immunity against lethal herpesvirus challenge infection in mice. Journal of virology 77, 9312-9323. Fu, X., Zhang, X., 2001. Delivery of herpes simplex virus vectors through liposome formulation. Molecular Therapy 4, 447-453. Galluzzi, L., Brenner, C., Morselli, E., Touat, Z., Kroemer, G., 2008. Viral control of mitochondrial apoptosis. PLoS Pathogens 4, e1000018. Gamlem, H., Nordstoga, K., Glattre, E., 2008. Canine neoplasia–introductory paper. Apmis 116, 5-18. Geletneky, K., Herrero y Calle, M., Rommelaere, J., Schlehofer, J., 2005. Oncolytic potential of rodent parvoviruses for cancer therapy in humans: a brief review. Zoonoses and Public Health 52, 327-330. Genovese, C., Trani, D., Caputi, M., Claudio, P., 2006. Cell cycle control and beyond: emerging roles for the retinoblastoma gene family. Oncogene 25, 5201. Gentschev, I., Ehrig, K., Donat, U., Hess, M., Rudolph, S., Chen, N., Yu, Y.A., Zhang, Q., Bullerdiek, J., Nolte, I., 2010. Significant growth inhibition of canine mammary carcinoma xenografts following treatment with oncolytic vaccinia virus GLV-1h68. Journal of oncology 2010. Gholami, S., Chen, C., Gao, S., Lou, E., Fujisawa, S., Carson, J., Nnoli, J., Chou, T., Bromberg, J., Fong, Y., 2014. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer gene therapy 21, 283. Gilbertson, S., Kurzman, I., Zachrau, R., Hurvitz, A., Black, M., 1983. Canine mammary epithelial neoplasms: biologic implications of morphologic characteristics assessed in 232 dogs. Veterinary Pathology 20, 127-142. Grothey, A., Ellis, L.M., 2008. Targeting angiogenesis driven by vascular endothelial growth factors using antibody-based therapies. The Cancer Journal 14, 170-177. Group, E.B.C.T.C., 2005. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. The Lancet 365, 1687-1717. Group, E.B.C.T.C., 2011. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. The lancet 378, 771-784. Haig, D.M., Mercer, A., 1998. Ovine diseases. Orf. Veterinary research 29, 311-326. Hellmén, E., Bergström, R., Holmberg, L., Spångberg, I.-B., Hansson, K., Lindgren, A., 1993. Prognostic factors in canine mammary tumors: a multivariate study of 202 consecutive cases. Veterinary Pathology 30, 20-27. Higgins, G., Pack, G., 1951. Virus therapy in the treatment of tumors. Bulletin of the Hospital for Joint Diseases 12, 379. Hirasawa, K., Nishikawa, S.G., Norman, K.L., Coffey, M.C., Thompson, B.G., Yoon, C.-S., Waisman, D.M., Lee, P.W., 2003. Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer research 63, 348-353. Huang, B., Sikorski, R., Kirn, D., Thorne, S., 2011. Synergistic anti-tumor effects between oncolytic vaccinia virus and paclitaxel are mediated by the IFN response and HMGB1. Gene therapy 18, 164. Igase, M., Hwang, C.C., Coffey, M., Okuda, M., Noguchi, S., Mizuno, T., 2015. The oncolytic effects of reovirus in canine solid tumor cell lines. Journal of Veterinary Medical Science 77, 541-548. Illera, J.C., Pérez-Alenza, M.D., Nieto, A., Jiménez, M.A., Silvan, G., Dunner, S., Peña, L., 2006. Steroids and receptors in canine mammary cancer. Steroids 71, 541-548. Johnson, D.B., Puzanov, I., Kelley, M.C., 2015. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 7, 611-619. Johnston, S.R., 2006. Clinical efforts to combine endocrine agents with targeted therapies against epidermal growth factor receptor/human epidermal growth factor receptor 2 and mammalian target of rapamycin in breast cancer. Clinical Cancer Research 12, 1061s-1068s. Karayannopoulou, M., Kaldrymidou, E., Constantinidis, T., Dessiris, A., 2005. Histological grading and prognosis in dogs with mammary carcinomas: application of a human grading method. Journal of comparative pathology 133, 246-252. Kay, M.A., Glorioso, J.C., Naldini, L., 2001. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature medicine 7, 33. Keryer-Bibens, C., Pioche-Durieu, C., Villemant, C., Souquère, S., Nishi, N., Hirashima, M., Middeldorp, J., Busson, P., 2006. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC cancer 6, 283. Klopfleisch, R., Von Euler, H., Sarli, G., Pinho, S., Gärtner, F., Gruber, A., 2011. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Veterinary pathology 48, 98-116. Koprowski, H., Norton, T.W., 1950. Interference between certain neurotropic viruses and transplantable mouse tumors. Cancer 3, 874-885. Kottke, T., Hall, G., Pulido, J., Diaz, R.M., Thompson, J., Chong, H., Selby, P., Coffey, M., Pandha, H., Chester, J., 2010. Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. The Journal of clinical investigation 120, 1551-1560. Koul, H.K., Pal, M., Koul, S., 2013. Role of p38 MAP kinase signal transduction in solid tumors. Genes and cancer 4, 342-359. Kranz, A., Mattfeldt, T., Waltenberger, J., 1999. Molecular mediators of tumor angiogenesis: enhanced expression and activation of vascular endothelial growth factor receptor KDR in primary breast cancer. International journal of cancer 84, 293-298. Le, L., Rivera, A., Glasgow, J., Ternovoi, V., Wu, H., Wang, M., Smith, B., Siegal, G., Curiel, D., 2006. Infectivity enhancement for adenoviral transduction of canine osteosarcoma cells. Gene therapy 13, 389. Lederman, E.R., Green, G.M., DeGroot, H.E., Dahl, P., Goldman, E., Greer, P.W., Li, Y., Zhao, H., Paddock, C.D., Damon, I.K., 2007. Progressive ORF virus infection in a patient with lymphoma: successful treatment using imiquimod. Clinical infectious diseases 44, e100-e103. Lee, W., Foo, W., Law, S., Poon, Y., Sze, W., Tung, S., Lau, W., 1997. Nasopharyngeal carcinoma: presenting symptoms and duration before diagnosis. Hong Kong medical journal. Lin, J.-C., Jan, J.-S., Hsu, C.-Y., Liang, W.-M., Jiang, R.-S., Wang, W.-Y., 2003. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. Journal of clinical oncology 21, 631-637. Liu, H.-P., Chen, C.-C., Wu, C.-C., Huang, Y.-C., Liu, S.-C., Liang, Y., Chang, K.-P., Chang, Y.-S., 2012. Epstein-Barr virus-encoded LMP1 interacts with FGD4 to activate Cdc42 and thereby promote migration of nasopharyngeal carcinoma cells. PLoS pathogens 8, e1002690. Liu, M.-T., Hsieh, C.-Y., Chang, T.-H., Lin, J.-P., Huang, C.-C., Wang, A.-Y., 2003. Prognostic factors affecting the outcome of nasopharyngeal carcinoma. Japanese journal of clinical oncology 33, 501-508. Lo, K.W., To, K.F., Huang, D.P., 2004. Focus on nasopharyngeal carcinoma. Cancer cell 5, 423-428. Lo, Y., 2001. Prognostic implication of pretreatment plasma/serum concentration of Epstein-Barr virus DNA in nasopharyngeal carcinoma. Biomedicine & pharmacotherapy 55, 362-365. Lun, X., Yang, W., Alain, T., Shi, Z.-Q., Muzik, H., Barrett, J.W., McFadden, G., Bell, J., Hamilton, M.G., Senger, D.L., 2005. Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas. Cancer research 65, 9982-9990. Mainou, B.A., Raab-Traub, N., 2006. LMP1 strain variants: biological and molecular properties. Journal of virology 80, 6458-6468. Marks, J.E., Phillips, J.L., Menck, H.R., 1998. The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma. Cancer 83, 582-588. Masmoudi, A., Toumi, N., Khanfir, A., Kallel-Slimi, L., Daoud, J., Karray, H., Frikha, M., 2007. Epstein-Barr virus-targeted immunotherapy for nasopharyngeal carcinoma. Cancer treatment reviews 33, 499-505. McCart, J.A., Ward, J.M., Lee, J., Hu, Y., Alexander, H.R., Libutti, S.K., Moss, B., Bartlett, D.L., 2001. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer research 61, 8751-8757. McFadden, G., 2005. Poxvirus tropism. Nature Reviews Microbiology 3, 201. McKeever, D., Jenkinson, D.M., Hutchison, G., Reid, H., 1988. Studies of the pathogenesis of orf virus infection in sheep. Journal of comparative pathology 99, 317-328. Mercer, A., Wise, L., Scagliarini, A., McInnes, C., Büttner, M., Rziha, H., McCaughan, C., Fleming, S., Ueda, N., Nettleton, P., 2002. Vascular endothelial growth factors encoded by Orf virus show surprising sequence variation but have a conserved, functionally relevant structure. Journal of General Virology 83, 2845-2855. Mimi, C.Y., Ho, J.H., Ross, R.K., Henderson, B.E., 1981. Nasopharyngeal carcinoma in Chinese—salted fish or inhaled smoke Preventive medicine 10, 15-24. Mineta, H., Miura, K., Ogino, T., Takebayashi, S., Misawa, K., Ueda, Y., Suzuki, I., Dictor, M., Borg, Å., Wennerberg, J., 2000. Prognostic value of vascular endothelial growth factor (VEGF) in head and neck squamous cell carcinomas. British journal of cancer 83, 775. Nagata, Y., Lan, K.-H., Zhou, X., Tan, M., Esteva, F.J., Sahin, A.A., Klos, K.S., Li, P., Monia, B.P., Nguyen, N.T., 2004. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer cell 6, 117-127. Pack, G.T., 1950. Note on the experimental use of rabies vaccine for melanomatosis. AMA archives of dermatology and syphilology 62, 694-695. Parato, K.A., Senger, D., Forsyth, P.A., Bell, J.C., 2005. Recent progress in the battle between oncolytic viruses and tumours. Nature Reviews Cancer 5, 965. Perou, C.M., Sørlie, T., Eisen, M.B., Van De Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., 2000. Molecular portraits of human breast tumours. Nature 406, 747. Phuangsab, A., Lorence, R.M., Reichard, K.W., Peeples, M.E., Walter, R.J., 2001. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer letters 172, 27-36. Rintoul, J.L., Lemay, C.G., Tai, L.-H., Stanford, M.M., Falls, T.J., De Souza, C.T., Bridle, B.W., Daneshmand, M., Ohashi, P.S., Wan, Y., 2012. ORFV: a novel oncolytic and immune stimulating parapoxvirus therapeutic. Molecular therapy 20, 1148-1157. Roberts, M.S., Lorence, R.M., Groene, W.S., Bamat, M.K., 2006. Naturally oncolytic viruses. Current opinion in molecular therapeutics 8, 314-321. Russell, S.J., Peng, K.-W., 2007. Viruses as anticancer drugs. Trends in pharmacological sciences 28, 326-333. Russell, S.J., Peng, K.W., Bell, J.C., 2012. Oncolytic virotherapy. Nature Biotechnology 30, 658-670. Santen, R.J., Song, R.X., McPherson, R., Kumar, R., Adam, L., Jeng, M.-H., Yue, W., 2002. The role of mitogen-activated protein (MAP) kinase in breast cancer. The Journal of steroid biochemistry and molecular biology 80, 239-256. Sassi, F., Benazzi, C., Castellani, G., Sarli, G., 2010. Molecular-based tumour subtypes of canine mammary carcinomas assessed by immunohistochemistry. BMC Veterinary Research 6, 5. Savory, L.J., Stacker, S.A., Fleming, S.B., Niven, B.E., Mercer, A.A., 2000. Viral vascular endothelial growth factor plays a critical role in orf virus infection. Journal of Virology 74, 10699-10706. Schneider, R., Dorn, C.R., Taylor, D., 1969. Factors influencing canine mammary cancer development and postsurgical survival. Journal of the National Cancer Institute 43, 1249-1261. Sever, R., Brugge, J.S., 2015. Signal transduction in cancer. Cold Spring Harbor perspectives in medicine 5, a006098. Shafren, D.R., Au, G.G., Nguyen, T., Newcombe, N.G., Haley, E.S., Beagley, L., Johansson, E.S., Hersey, P., Barry, R.D., 2004. Systemic therapy of malignant human melanoma tumors by a common cold-producing enterovirus, coxsackievirus a21. Clinical cancer research 10, 53-60. Shtilbans, V., Wu, M., Burstein, D.E., 2008. Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Annals of diagnostic pathology 12, 153-160. Smith, B.F., Curiel, D.T., Ternovoi, V.V., Borovjagin, A.V., Baker, H.J., Cox, N., Siegal, G.P., 2006. Administration of a conditionally replicative oncolytic canine adenovirus in normal dogs. Cancer biotherapy and radiopharmaceuticals 21, 601-606. Smith, C., Tsang, J., Beagley, L., Chua, D., Lee, V., Li, V., Moss, D.J., Coman, W., Chan, K.H., Nicholls, J., 2012. Effective treatment of metastatic forms of Epstein-Barr virus–associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer research. Smith, N.R., Baker, D., James, N.H., Ratcliffe, K., Jenkins, M., Ashton, S.E., Sproat, G., Swann, R., Gray, N., Ryan, A., 2010. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clinical Cancer Research 16, 3548-3561. Smith, R.R., Huebner, R.J., Rowe, W.P., Schatten, W.E., Thomas, L.B., 1956. Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9, 1211-1218. Soldani, C., Scovassi, A., 2002. Poly (ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7, 321-328. Sorenmo, K., Kristiansen, V., Cofone, M., Shofer, F., Breen, A.M., Langeland, M., Mongil, C., Grondahl, A., Teige, J., Goldschmidt, M., 2009. Canine mammary gland tumours; a histological continuum from benign to malignant; clinical and histopathological evidence. Veterinary and comparative oncology 7, 162-172. Southam, C.M., Moore, A.E., 1952. Clinical studies of viruses as antineoplastic agents, with particular reference to Egypt 101 virus. Cancer 5, 1025-1034. Stojdl, D.F., Lichty, B., Knowles, S., Marius, R., Atkins, H., Sonenberg, N., Bell, J.C., 2000. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature medicine 6, 821. Stojdl, D.F., Lichty, B.D., Paterson, J.M., Power, A.T., Knowles, S., Marius, R., Reynard, J., Poliquin, L., Atkins, H., Brown, E.G., 2003. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer cell 4, 263-275. Su, H.Y. 2001. Establishment and characterization of a cell line from canine mammary gland tumor. Thesis, Department of Veterinary Medicine, National Chung Hsing University, Taiwan. Thomas, C.E., Ehrhardt, A., Kay, M.A., 2003. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics 4, 346. Thorne, S.H., Bartlett, D.L., Kirn, D.H., 2005. The use of oncolytic vaccinia viruses in the treatment of cancer: a new role for an old ally. Current gene therapy 5, 429-443. Tiwari, V., Shukla, D., 2010. Phosphoinositide 3 kinase signalling may affect multiple steps during herpes simplex virus type-1 entry. Journal of General Virology 91, 3002-3009. Tseng, C.Y. 2018. Strategies of Developing Recombinant Orf Virus as a Viral Vector. Thesis, Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taiwan. Tseng, Y.Y., Lin, F.Y., Cheng, S.F., Tscharke, D., Chulakasian, S., Chou, C.C., Liu, Y.F., Chang, W.S., Wong, M.L., Hsu, W.L., 2015. Functional analysis of the short isoform of orf virus protein OV20.0. J Virol 89, 4966-4979. Turnbull, S., West, E.J., Scott, K.J., Appleton, E., Melcher, A., Ralph, C., 2015. Evidence for Oncolytic Virotherapy: Where Have We Got to and Where Are We Going? Viruses 7, 6291-6312 Tzahar, E., Moyer, J.D., Waterman, H., Barbacci, E.G., Bao, J., Levkowitz, G., Shelly, M., Strano, S., Pinkas‐Kramarski, R., Pierce, J.H., 1998. Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network. The EMBO journal 17, 5948-5963. Vermes, I., Haanen, C., Steffens-Nakken, H., Reutellingsperger, C., 1995. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. Journal of immunological methods 184, 39-51. von Euler, H., Sadeghi, A., Carlsson, B., Rivera, P., Loskog, A., Segall, T., Korsgren, O., Tötterman, T.H., 2008. Efficient adenovector CD40 ligand immunotherapy of canine malignant melanoma. Journal of Immunotherapy 31, 377-384. Wang, G., Barrett, J.W., Stanford, M., Werden, S.J., Johnston, J.B., Gao, X., Sun, M., Cheng, J.Q., McFadden, G., 2006. Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proceedings of the National Academy of Sciences of the United States of America 103, 4640-4645. Wang, J.N., Hu, P., Zeng, M.S., Liu, R.B., 2011. Anti-tumor effect of oncolytic herpes simplex virus G47delta on human nasopharyngeal carcinoma. Chinese Journal of Cancer 30, 831-841. Wang, L.-C.S., Lynn, R.C., Cheng, G., Alexander, E., Kapoor, V., Moon, E.K., Sun, J., Fridlender, Z.G., Isaacs, S.N., Thorne, S.H., 2012. Treating tumors with a vaccinia virus expressing IFNβ illustrates the complex relationships between oncolytic ability and immunogenicity. Molecular Therapy 20, 736-748. Wang, R., 2017. Current Standards and New Treatment Insights in HER2-Driven Metastatic Breast Disease. American Journal of Hematology and Oncology 12. Wedge, S.R., Kendrew, J., Hennequin, L.F., Valentine, P.J., Barry, S.T., Brave, S.R., Smith, N.R., James, N.H., Dukes, M., Curwen, J.O., 2005. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer research 65, 4389-4400. Weigand, M., Hantel, P., Kreienberg, R., Waltenberger, J., 2005. Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 8, 197-204. Westberg, S., Sadeghi, A., Svensson, E., Segall, T., Dimopoulou, M., Korsgren, O., Hemminki, A., Loskog, A.S., Tötterman, T.H., von Euler, H., 2013. Treatment efficacy and immune stimulation by AdCD40L gene therapy of spontaneous canine malignant melanoma. Journal of Immunotherapy 36, 350-358. Wise, L.M., Veikkola, T., Mercer, A.A., Savory, L.J., Fleming, S.B., Caesar, C., Vitali, A., Makinen, T., Alitalo, K., Stacker, S.A., 1999. Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proceedings of the National Academy of Sciences 96, 3071-3076. YAMAGAMI, T., KOBAYASHI, T., TAKAHASHI, K., SUGIYAMA, M., 1996. Prognosis for canine malignant mammary tumors based on TNM and histologic classification. Journal of Veterinary Medical Science 58, 1079-1083. Yamashita, S., Kondo, M., Hashimoto, S., 1985. Squamous cell carcinoma of the nasopharynx. Acta Radiologica: Oncology 24, 315-320. Yu, W., Fang, H., 2007. Clinical trials with oncolytic adenovirus in China. Current cancer drug targets 7, 141-148. Zhang, Q., Yong, A.Y., Wang, E., Chen, N., Danner, R.L., Munson, P.J., Marincola, F.M., Szalay, A.A., 2007. Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer research 67, 10038-10046. | 摘要: | 溶瘤病毒為癌症的替代治療方式;在不影響正常細胞的狀況下,此類病毒具有選擇性感染、複製並溶解腫瘤細胞之特質。除此之外,溶瘤病毒也可以刺激免疫反應進而調節腫瘤微環境並改變腫瘤的免疫耐受性。ORFV為感染山羊以及綿羊的一種副痘病毒(Parapoxovis ovis),對於人亦具有感受性,但僅造成局部輕微病灶,近來已被視為新興的溶瘤療法。ORFV在人之肺癌和乳癌異種小鼠模式中可使腫瘤團塊消退,推測病毒感染可能活化自然殺手細胞而促進腫瘤毒殺。由於此病毒嗜侵犯上皮,本研究遂以上皮來源之人類鼻咽癌(Nasopharyngeal carcinoma,NPC)細胞為模式探究ORFV之溶瘤效果,並同步比較ORFV感染本實驗室培養的犬乳腺腫瘤細胞(DMGT),藉此探究ORFV可能之作用機制。本研究使用兩種重組ORFV,分別為ORFV-eGFP WT及VEGF△-vvTK-eGFP,前者基因體為野生型,後者缺損血管內皮基因,但均帶有eGFP螢光基因。從螢光訊號顯示,在測試的四種細胞中,NPC有最顯著的感染率,A549次之,MDCK和DMGT則相對不顯著。此結果與西方墨點法之定量分析相符;NPC感染後比起其他細胞株有顯著較高的病毒蛋白 (F1L)。此外,NPC細胞中ORFV子代病毒產量顯著高於其他測試細胞。由於ORFV在不同細胞中的感染率具顯著差異,有鑒於溶瘤病毒特異性的感染腫瘤細胞可能是因為病毒感染對於細胞訊息之依賴性;因此本實驗另針對常見的癌症訊息傳遞路徑(例如pAkt/mTOR以及ERK)活化情形是否與ORFV感染率具關連性。結果顯示,DMGT細胞之Akt活化程度顯著高於其他細胞,而且經Akt抑制劑MK2006 (500nM)處理之後,ORFV-eGFP WT對於犬乳腺腫瘤細胞株的感染力顯著提升,因此推測pAkt/mTOR訊息傳遞路徑可能影響ORFV的感染。綜上所述,本研究首先發現ORFV有效率的感染人鼻咽癌細胞株,並於感染12-24小時之後即造成多數NPC細胞失去貼附性,型態圓型化以及懸浮的現象;這些結果強烈支持ORFV極有可能因感染而毒殺NPC細胞,然而溶瘤效果以及機制需進一步探究。此外,ORFV對於腫瘤生長之影響需進一步於體內模式中測試。ORFV對於DMGT感受性差,而抑低Akt/mTOR訊息路徑之活化顯著增強ORFV的感染,故未來針對pAkt訊息傳遞路徑為標的基因工程重組ORFV或許可增強溶瘤能力。 Oncolytic viruses (OVs), serving as an alternative antitumor strategy, could selectively infect, replicate and lyse tumor cells, while leaving healthy cells intact. Furthermore, infection of OVs could trigger immune response that in turns alter tumor microenvironment and change the tumor immunotolerance. Parapoxovis ovis Orf virus (ORFV), a zoonotic etiologic agent, infects natural hosts (goats and sheep) and also humans. Recently, ORFV has been proposed as a novel candidate for oncolytic therapy; it activates natural killer cells and leads to tumor regression on human lung and breast cancer cell xenograft model. As ORFV is epitheliotrophic, the aim of this study is to evaluate the oncolytic effect of ORFV on nasopharyngeal carcinoma cells (NPC), and the ORFV infectivity of ORFV will be compared in parallel with canine mammary gland tumor cells (DMGT). Two recombinant ORFVs expressing eGFP, namely ORFV-eGFP WT and VEGF△-vvTK-eGFP which contains genome of wild type or with deletion of VEGF gene, respectively. Infectivity of ORFVs in two human cancer cell lines NPC and A549 (a positive control cell line), as well as DMGT and Madin-Darby kidney (MDCK) cells of canine origin were infected by two recombinant ORFVs. As indicated by eGFP fluorescence, among the four cell lines, NPC cell line had the most significant high infection rate, followed by A549 and the least were MDCK and DMGT. Consistently, expression level of viral F1L protein in NPC was statistically higher than other cell lines infected with either ORFV-eGFP WT or VEGF△-vvTK-eGFP ORFV. Similarly, the yield of viral progenies in NPC was significantly higher than the positive cell line, A549. As cell signaling pathway in tumors is possibly responsible for selectively infection of OVs, the common survival signaling, i.e pAkt/mTOR was monitored. It appears Akt was strongly activated (as indicated by high level of phosphorylated Akt, pAkt) in DMGT cells, the least susceptible cell line for ORFV, and that led us to suspect Akt pathway might jeopardize ORFV infection. Indeed, when pAkt/ mTOR pathway was suppressed by Akt inhibitor MK2006 (500nM), viral protein F1L expression was significant elevated in DMGT cells under treatment at three hours prior to ORFV-eGFP WT infection as compared with those of mock group. In conclusion, this study revealed for the first time that epitheliotrophic ORFV significantly infects human NPC cell line. Nevertheless, oncolytic effect should be further tested in in vivo models since the underlying mechanism remains unclear. As for DMGT cell line, since MK2006 could enhance ORFV infection, ORFV engineered to target the Akt pathway perhaps could boost the oncolytic potential. |
URI: | http://hdl.handle.net/11455/98529 | Rights: | 同意授權瀏覽/列印電子全文服務,2021-08-15起公開。 |
Appears in Collections: | 獸醫學系所 |
Files in This Item:
File | Size | Format | Existing users please Login |
---|---|---|---|
nchu-107-7105038122-1.pdf | 13.68 MB | Adobe PDF | This file is only available in the university internal network |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.