Please use this identifier to cite or link to this item:
標題: Determination of Landslide Susceptibilities Using UAV-Borne RGB and NIR images: A Case Study of Shenmu Area in Taiwan
無人飛行載具產製可見光與近紅外光數值地形分析崩塌潛感值 :以神木村地區為例
作者: Yu-Shen Hsiao
Ta-Hsien Chung
Su-Chin Chen
Jung-Chieh Chang
關鍵字: UAV;Landslide Susceptibility;Logistic Regression;無人飛行載具;崩塌潛感;羅吉斯迴歸
Project: 中華水土保持, Volume 49, Issue 3, Page(s) 142-153.
This study conducted a landslide susceptibility analysis at Shenmu area in Taiwan by using terrain models constructed using unmanned aerial vehicles (UAVs). High-resolution orthomosaics and digital surface models (DSMs) were both obtained from several UAV practical surveys by using red–green–blue (RGB) and near-infrared (NIR) cameras, respectively. GPS control points were used for evaluating the DSMs. The algorithm for landslide susceptibility prediction is based on logistic regression, in which elevation, terrain slope, terrain aspect, terrain relief, terrain roughness, and curvature, were the primary factors. The results are as follows: (1) the vertical accuracies of RGB- and NIR-derived DSMs are 0.953 and 2.236 m, respectively; (2) terrain slopes and aspects are the most influential factors in landslide susceptibility prediction; (3) the DSM derived from RGB images are more appropriate for landslide susceptibility prediction than that from NIR.

本文利用無人飛行載具建置地形,以研究台灣神木村地區崩塌潛感相關課題。經由搭載可見光與 近紅外光相機的無人飛行載具航拍,獲得神木村周邊 10 公分空間解析度的正射鑲嵌影像與 50 公分網格解析 度的數值地表模型。本研究利用 GPS 衛星控制點檢核數值地表模型,並利用羅吉斯迴歸分析神木村山崩潛感 值,選用包括高度、坡度、坡向、地形起伏度、地形粗造度與總曲率等 6 個崩塌潛感因子。本研究主要相關 結果如下:(1) 可見光產製與近紅外光產製的數值地表模型,高程精度分別為 0.953 公尺與 2.236 公尺;(2) 坡 度與坡向為本研究區域之最重要崩塌潛感因子;(3) 可見光影像產製之數值地形,比近紅外光更適合應用於山 崩潛感值預估。
Appears in Collections:第49卷 第03期

Files in This Item:
File Description SizeFormat
97387-2.pdf6.82 MBAdobe PDFView/Open
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.