Please use this identifier to cite or link to this item:
標題: Adhesion of santoprene/nano-paricle nanocomposites
作者: 屈睦舜
關鍵字: SiO2;Santoprene;nanocomposites;adhesion strength;二氧化矽;奈米複合材料;黏著強度
出版社: 材料工程學研究所
Thermoplastic Elastomers(TPV)是一種性能優異的熱塑性彈性體,其中以動態硫化PP/EPDM系統的商品化產品Santoprene最為優異,其良好的形態穩定性、抗壓縮變形、低溫柔韌性、可回收及易於使用等優點,使其被大量使用在汽車產業。但是Santoprene不具極性及官能基,若欲與金屬或其它具有極性之工程塑膠混摻或接著,所獲得的結果一般都不盡理想。故本研究嘗試利用改質奈米級二氧化矽並將其混摻在Santoprene中,以達到奈米分散效果,形成奈米複合材料,藉由奈米級粉體之特性及無機物之高剛性來提昇高分子的熱性質及機械性質,並添加mPP及EVA橡膠來加強Santoprene/二氧化矽顆粒之間的相容性與表面黏著力,使其能與金屬基板達到最佳的黏著效果。
本實驗利用吸附陽離子界面活性劑(CTAB)及表面共聚合苯乙烯與甲基丙烯酸環氧丙酯之方法來改質二氧化矽,再藉由熔融混煉的方式製備Santoprene/二氧化矽奈米複合材料。由FTIR分析鑑定,在2925cm-1處有CTAB中之C-H吸收特性峰及在1461、1567、1656 cm-1處有聚苯乙烯中之C=C吸收特性峰,可知二氧化矽改質已成功。在TGA分析發現添加3wt %改質二氧化矽及3wt %的mPP之Santoprene/二氧化矽奈米複合材料,50wt % 損失溫度比純的Santoprene提高14.8℃。DMA測試發現添加3wt%表面聚合改質二氧化矽與3 %的mPP所製備之Santoprene/二氧化矽奈米複合材料,儲存模數比純的Santoprene提昇141 %。拉伸測試發現,奈米複合材料與不鏽鋼基板具有較佳的接著性,只需添加1wt %改質二氧化矽及mPP即可提昇Santoprene/二氧化矽奈米複合材料與不鏽鋼基板間之韌性約60%及最大拉伸應力約39%左右。而EVA的添加又可使奈米複合材料之韌性與拉伸位移量更進一步的提昇,添加3wt%之EVA時,韌性則可提昇134%,最大拉伸應力提昇約30%,拉伸位移量可提昇61%。

The best-commercialized product of dynamic-vulcanization PP/EPDM called Santoprene is a thermoplastic elastomer and shows excellent mechanical and thermalproperties which can be widely used in automobile industry due to their well-shape stability, anti-compression, flexibility at room temperature and recyclability. Nevertheless, it's not polar and does not contain any functional group that limit it's application in mixing with polar engineering plastics and bounding with metal. Therefore, this research is focus on developing the Santoprene/ nanoscale silica nanocomposites containing better adhesion on the interface of glass and metal. The nanoscale silica modified by surfactant can be mixed with Santoprene through the melt process to form the nanocomposite. In order to improve the compatibility and surface adhesion, the mPP and EVA rubber have been added into the system.
FTIR analysis on nanocomposite shows the characteristic peak at 2925 cm-1 corresponding to the absorption peak of C-H of CTAB and at 1461, 1567, 1656 cm-1 corresponding to the absorption peak of C=C of PS. This result indicates the treatment of silica is complete. From TGA and DMA results, the addition of 3wt% modified silica into Santoprene can increase the 50% thermal degradation and mechanical properties 14.8℃ and 141% compared to pure Santoprene. The addition of 1wt% modified silica and mPP into Santoprene improves the adhesion between sample and stainless by 60% in toughness and 39% in maximum tensile strength. Further adding EVA into system can improve their adhesion. Additionally, the surface treatment of nanocomposite by plasma has been applied and discussed in this thesis.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.