Please use this identifier to cite or link to this item:
標題: Intrinsic Carrier Transport of Phase-Pure Homologous 2D Organolead Halide Hybrid Perovskite Single Crystals
作者: Li, Min-Ken
Chen, Tzu-Pei
Lin, Yen-Fu
Raghavan, Chinnambedu Murugesan
Chen, Wei-Liang
Yang, Shih-Hsien
Sankar, Raman
Luo, Chih-Wei
Chang, Yu-Ming
Chen, Chun-Wei
關鍵字: 2D RPP single crystals;field-effect transistors;intrinsic charge transport;photoluminescence;solution growth
Project: Small (Weinheim an der Bergstrasse, Germany), Volume 14, Issue 52, Page(s) e1803763.
This work reveals the intrinsic carrier transport behavior of 2D organolead halide perovskites based on phase-pure homologous (n = 1, 2, and 3) Ruddelsden-Popper perovskite (RPP) (BA)2 (MA)n-1 Pbn I3n+1 single crystals. The 2D perovskite field effect transistors with high-quality exfoliated 2D perovskite bulk crystals are fabricated, and characteristic output and transfer curves are measured from individual single-crystal flakes with various n values under different temperatures. Unipolar n-type transport dominated the electrical properties of all these 2D RPP single crystals. The transport behavior of the 2D organolead halide hybrid perovskites exhibits a strong dependence on the n value and the mobility substantially increases as the ratio of the number of inorganic perovskite slabs per organic spacer increases. By extracting the effect of contact resistances, the corrected mobility values for n = 1, 2, and 3 are 2 × 10-3 , 8.3 × 10-2 , and 1.25 cm2 V-1 s-1 at 77 K, respectively. Furthermore, by combining temperature-dependent electrical transport and optical measurements, it is found that the origin of the carrier mobility dependence on the phase transition for 2D organolead halide perovskites is very different from that of their 3D counterparts. Our findings offer insight into fundamental carrier transport behavior of 2D organic-inorganic hybrid perovskites based on phase-pure homologous single crystals.
DOI: 10.1002/smll.201803763
Appears in Collections:奈米科學研究所

Files in This Item:
File Description SizeFormat Existing users please Login
153.pdf2.08 MBAdobe PDFThis file is only available in the university internal network   
Show full item record

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.