Please use this identifier to cite or link to this item:
標題: Slow Electron Making More Efficient Radiation Emission
作者: Dong-Sing Wuu
Sin-Liang Ou
Ching-Ho Tien
Project: Scientific Reports, Volume 8, 4865
In conventional emitting devices, the mobility of electron is much higher than that of hole, which increases the non-recombination rate. To generate slow electrons, we demonstrate an electron retarding n-electrode (ERN) on the n-GaN layer of InGaN blue light emitting diode (LED), making more efficient radiation emission. Transparent conductive oxides are estimated to be more suitable for ERN materials. However, for ERN materials used in InGaN LEDs, three requirements should be satisfied, i.e., Ohmic contact to n-GaN, dilute magnetic doping, and good electrical conductivity. The pulsed-laser deposited cobalt-doped ZnO film prepared at 400 °C was chosen as the ERN. The electron retarding of 120-nm-thick ERN/n-GaN reached 19.9% compared to the n-GaN. The output powers (@350 mA) of LEDs with and without the ERN were 246.7 and 212.9 mW, while their wall-plug efficiencies were 18.2% and 15.1%, respectively. Moreover, owing to the efficient filling of electrons in the quantum wells by inserting the ERN, the bandgap of quantum wells was enlarged, inducing the blue-shift in the emission wavelength of LED. The slow electron generated from the ERN technique paves the way to solve the problem of large difference between electron and hole velocities and improve the optoelectronic performance of emitting devices.
DOI: 10.1038/s41598-018-23203-x
Appears in Collections:材料科學與工程學系

Files in This Item:
File Description SizeFormat Existing users please Login
253.pdf3.23 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.