Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99401
標題: 以菜鴨及正番鴨為例探討季節性生殖與非季節性生殖水禽體內生殖荷爾蒙的年度變化
The annual fluctuations of reproduction related hormone between seasonal and non-seasonal water fowl using Tsaiya duck and Muscovy as models
作者: 周俞旻
Yu-Min Chou
關鍵字: 菜鴨;番鴨;季節性繁殖;性荷爾蒙;Tsaiya duck;Muscovy;seasonal breeding;sex hormone
引用: 李舜榮. (2009). <鴨生產系統手冊> 蘇晉暉、鄭智翔. (2018). <繁殖季節遇上光照不足,如何提振番鴨產蛋率?-人工 光照接力互補,全年皆產期>. doi:10.6708/harvest.201805_68(5).0016 Dawson, A. (1999). Photoperiodic Control of Gonadotrophin-Releasing Hormone Secretion in Seasonally Breeding Birds. In P. D. Prasada Rao & R. E. Peter (Eds.), Neural Regulation in the Vertebrate Endocrine System: Neuroendocrine Regulation (pp. 141-159). Boston, MA: Springer US. Dawson, A., King, V. M., Bentley, G. E., & Ball, G. F. (2001). Photoperiodic Control of Seasonality in Birds. Journal of Biological Rhythms, 16(4), 365-380. doi:10.1177/074873001129002079 Deviche, P., Hurley, L. L., & Fokidis, H. B. (2011). Avian testicular structure, function, and regulation. In Hormones and Reproduction of Vertebrates: Birds (pp. 27-70): Elsevier. Donham, R. S. (1979). Annual Cycle of Plasma Luteinizing Hormone and Sex Hormones in Male and Female Mallards (Anas platyrhynchos). Biology of Reproduction, 21(5), 1273-1285. doi:10.1095/biolreprod21.5.1273 Ferreira, A., & Mehanna, M. (2012). Seasonal testicular changes in Dendropsophus minutus Peters, 1872 (Anura, Hylidae). Biocell, 36(2), 57-62. Garner, W. W., & Allard, H. A. (1920). Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Monthly Weather Review, 48(7), 415-415. Gharib, S. D., Wierman, M. E., Shupnik, M. A., & Chin, W. W. (1990). Molecular Biology of the Pituitary Gonadotropins. Endocrine Reviews, 11(1), 177-199. doi:10.1210/edrv-11-1-177 Girling, J. E., Bennett, E. J., & Cockrem, J. F. (2002). Administration of pregnant mare serum gonadotropin to Japanese quail (Coturnix coturnix japonica): dose response over seven days and comparison of delivery by daily injection or osmotic pump. New Zealand Veterinary Journal, 50(3), 115-121. doi:10.1080/00480169.2002.36293 Grasso, M., Fuso, A., Dovere, L., de Rooij, D. G., Stefanini, M., Boitani, C., & Vicini, E. (2012). Distribution of GFRA1-expressing spermatogonia in adult mouse testis. Reproduction, 143(3), 325-332. doi:10.1530/rep-11-0385 Haase, E. (1983). The annual reproductive cycle in mallards. Journal of Steroid Biochemistry, 19(1, Part 3), 731-737. doi:https://doi.org/10.1016/0022-4731(83)90004-3 Haase, E., Sharp, P. J., & Paulke, E. (1975). Seasonal changes in plasma LH levels in domestic ducks. J Reprod Fertil, 44(3), 591-594. Haase, E., Sharp, P. J., & Paulke, E. (1985). Seasonal changes in the concentrations of plasma gonadotropins and prolactin in wild mallard drakes. Journal of Experimental Zoology, 234(2), 301-305. doi:doi:10.1002/jez.1402340216 Hanon, E. A., Lincoln, G. A., Fustin, J.-M., Dardente, H., Masson-Pévet, M., Morgan, P. J., & Hazlerigg, D. G. (2008). Ancestral TSH Mechanism Signals Summer in a Photoperiodic Mammal. Current Biology, 18(15), 1147-1152. doi:https://doi.org/10.1016/j.cub.2008.06.076 Hawley, A. W. L., & Aleksiuk, M. (1976). The influence of photoperiod and temperature on seasonal testicular recrudescence in the red-sided garter snake (Thamnophis sirtalis parietalis). Comparative Biochemistry and Physiology Part A: Physiology, 53(2), 215-221. doi:https://doi.org/10.1016/S0300-9629(76)80058-8 Hermanns, U., & Hafez, E. S. E. (1981). Prolactin and Male Reproduction. Archives of Andrology, 6(2), 95-125. doi:10.3109/01485018108987351 Hoffman, R. A., & Reiter, R. J. (1965). Pineal Gland: Influence on Gonads of Male Hamsters. Science, 148(3677), 1609. doi:10.1126/science.148.3677.1609 Ikegami, K., Atsumi, Y., Yorinaga, E., Ono, H., Murayama, I., Nakane, Y., . . . Yoshimura, T. (2015). Low Temperature-Induced Circulating Triiodothyronine Accelerates Seasonal Testicular Regression. Endocrinology, 156(2), 647-659. doi:10.1210/en.2014-1741 Ikegami, K., & Yoshimura, T. (2012). Circadian clocks and the measurement of daylength in seasonal reproduction. Molecular and Cellular Endocrinology, 349(1), 76-81. doi:https://doi.org/10.1016/j.mce.2011.06.040 Islam, M., Bo Zhu, X., Aoyama, M., & Sugita, S. (2010). Histological and morphometric analyses of seasonal testicular variations in the Jungle Crow (Corvus macrorhynchos) (Vol. 85). Jenkins, L. K., Ross, W. L., & Young, K. A. (2007). Increases in apoptosis and declines in Bcl-XL protein characterise testicular regression in American crows (Corvus brachyrhynchos). Reproduction, fertility, and development, 19(3), 461-469. Johnson, L. B., Aiken, J., Mooney, D., Schloo, B. L., Griffith-Cima, L., Langer, R., & Vacanti, J. P. (1994). The mesentery as a laminated vascular bed for hepatocyte transplantation. Cell Transplant, 3(4), 273-281. Juss, T. S., Meddle, S. L., Servant, R. S., & King, V. M. (1993). Melatonin and photoperiodic time measurement in Japanese quail (Coturnix coturnix japonica). Proceedings of the Royal Society of London. Series B: Biological Sciences, 254(1339), 21-28. doi:doi:10.1098/rspb.1993.0121 Kerr, J., Maddocks, S., & Sharpe, R. (1992). Testosterone and FSH have independent, synergistic and stage-dependent effects upon spermatogenesis in the rat testis. Cell and tissue research, 268(1), 179-189. Leska, A., & Dusza, L. (2007). Seasonal changes in the hypothalamo-pituitary-gonadal axis in birds. Reproductive biology, 7(2), 99-126. Lopez-Calderon, A., Ariznavarreta, C., Gonzalez-Quijano, M. I., Tresguerres, J. A., & Calderon, M. D. (1991). Stress induced changes in testis function. J Steroid Biochem Mol Biol, 40(1-3), 473-479. Madekurozwa, M. C., S Chabvepi, T., Matema, S., & Teerds, K. (2002). Relationship between seasonal changes in spermatogenesis in the juvenile ostrich (Stuthio camelus) and the presence of the LH receptor and 3β-hydroxysteroid dehydrogenase (Vol. 123). Mobasheri, M. B., Jahanzad, I., Mohagheghi, M. A., Aarabi, M., Farzan, S., & Modarressi, M. H. (2007). Expression of two testis-specific genes, TSGA10 and SYCP3, in different cancers regarding to their pathological features. Cancer Detect Prev, 31(4), 296-302. doi:10.1016/j.cdp.2007.05.002 Nakane, Y., Ikegami, K., Ono, H., Yamamoto, N., Yoshida, S., Hirunagi, K., . . . Yoshimura, T. (2010). A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proceedings of the National Academy of Sciences, 107(34), 15264. doi:10.1073/pnas.1006393107 Ohta, T., Miyake, H., Miura, C., Kamei, H., Aida, K., & Miura, T. (2007). Follicle-stimulating hormone induces spermatogenesis mediated by androgen production in Japanese eel, Anguilla japonica. Biol Reprod, 77(6), 970-977. doi:10.1095/biolreprod.107.062299 ONO, H., NAKAO, N., YAMAMURA, T., KINOSHITA, K., MIZUTANI, M., NAMIKAWA, T., . . . YOSHIMURA, T. (2009). Red jungle fowl (Gallus gallus) as a model for studying the molecular mechanism of seasonal reproduction. Animal Science Journal, 80(3), 328-332. doi:doi:10.1111/j.1740-0929.2009.00628.x Orth, J. M., Gunsalus, G. L., & Lamperti, A. A. (1988). Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology, 122(3), 787-794. doi:10.1210/endo-122-3-787 Pellegrini, A., Grieco, M., Materazzi, G., Gesi, M., & Ricciardi, M. P. (1998). Stress-induced Morphohistochemical and Functional Changes in Rat Adrenal Cortex, Testis and Major Salivary Glands. The Histochemical Journal, 30(10), 695-701. doi:10.1023/a:1003493921112 Ralph, M. R., Foster, R. G., Davis, F. C., & Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science, 247(4945), 975. doi:10.1126/science.2305266 Ramaswamy, S., & Weinbauer, G. F. (2014). Endocrine control of spermatogenesis: Role of FSH and LH/ testosterone. Spermatogenesis, 4(2), e996025. doi:10.1080/21565562.2014.996025 Reiter, R. J. (1980). The Pineal and Its Hormones in the Control of Reproduction in Mammals*. Endocrine Reviews, 1(2), 109-131. doi:10.1210/edrv-1-2-109 Ross, A. W., Helfer, G., Russell, L., Darras, V. M., & Morgan, P. J. (2011). Thyroid Hormone Signalling Genes Are Regulated by Photoperiod in the Hypothalamus of F344 Rats. PLoS One, 6(6), e21351. doi:10.1371/journal.pone.0021351 Rubin, C. J., Zody, M. C., Eriksson, J., Meadows, J. R., Sherwood, E., Webster, M. T., . . . Andersson, L. (2010). Whole-genome resequencing reveals loci under selection during chicken domestication. Nature, 464(7288), 587-591. doi:10.1038/nature08832 Schrans-Stassen, B., van de Kant, H., de Rooij, D., & van Pelt, A. (1999). Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology, 140, 5894-5900. Shi, Z. D., Huang, Y. M., Liu, Z., Liu, Y., Li, X. W., Proudman, J. A., & Yu, R. C. (2007). Seasonal and photoperiodic regulation of secretion of hormones associated with reproduction in Magang goose ganders. Domest Anim Endocrinol, 32(3), 190-200. doi:10.1016/j.domaniend.2006.03.002 Shinomiya, A., Shimmura, T., Nishiwaki-Ohkawa, T., & Yoshimura, T. (2014). Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Front Endocrinol (Lausanne), 5, 12. doi:10.3389/fendo.2014.00012 Sinha Hikim, A. P., Bartke, A., & Russell, L. D. (1988). The seasonal breeding hamster as a model to study structure-function relationships in the testis. Tissue and Cell, 20(1), 63-78. doi:https://doi.org/10.1016/0040-8166(88)90008-0 Tae, H. J., Jang, B. G., Ahn, D. C., Choi, E. Y., Kang, H. S., Kim, N. S., . . . Kim, I. S. (2005). Morphometric studies on the testis of Korean ring-necked pheasant (Phasianus colchicus karpowi) during the breeding and non-breeding seasons. Vet Res Commun, 29(7), 629-643. doi:10.1007/s11259-005-3080-8 Thimonier, J. (1981). Control of seasonal reproduction in sheep and goats by light and hormones. J Reprod Fertil Suppl, 30, 33-45. Tseng, Y.-T., Liao, H.-F., Yu, C.-Y., Mo, C.-F., & Lin, S.-P. (2015). Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells (Vol. 150). Von Faber, H. (1963). Time Differences in the Response of Secondary Male Sexual Characters to Androgens: Facial Caruncles and Penis of the Muscovy Duck (Cairina moschata). Endocrinology, 72(1), 169-169. doi:10.1210/endo-72-1-169 Yamamura, T., Hirunagi, K., Ebihara, S., & Yoshimura, T. (2004). Seasonal Morphological Changes in the Neuro-Glial Interaction between Gonadotropin-Releasing Hormone Nerve Terminals and Glial Endfeet in Japanese Quail. Endocrinology, 145(9), 4264-4267. doi:10.1210/en.2004-0366 Yasuo, S., Watanabe, M., Nakao, N., Takagi, T., Follett, B. K., Ebihara, S., & Yoshimura, T. (2005). The Reciprocal Switching of Two Thyroid Hormone-Activating and -Inactivating Enzyme Genes Is Involved in the Photoperiodic Gonadal Response of Japanese Quail. Endocrinology, 146(6), 2551-2554. doi:10.1210/en.2005-0057 Yoshimura, T., Yasuo, S., Watanabe, M., Iigo, M., Yamamura, T., Hirunagi, K., & Ebihara, S. (2003). Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature, 426, 178. doi:10.1038/nature02117 https://www.nature.com/articles/nature02117#supplementary-information Young, K. A., & Nelson, R. J. (2001). Mediation of seasonal testicular regression by apoptosis. Reproduction, 122(5), 677-685. Zhang, L., Tang, J., Haines, C. J., Feng, H. L., Lai, L., Teng, X., & Han, Y. (2011). c-kit and its related genes in spermatogonial differentiation. Spermatogenesis, 1(3), 186-194. doi:10.4161/spmg.1.3.17760
摘要: 
許多溫帶地區動物生活環境會受到季節變化影響生理行為。為了節省能量消耗,動物必須能夠感知季節變化,調整如繁殖、冬眠等等行為。季節轉換伴隨著溫度、濕度、光照等等環境因子改變,其中光照變化目前被廣泛研究(ONO et al., 2009)。透過下視丘-腦下垂體-性腺軸(H-P-G axis),動物在下視丘感知不同光週期(Photoperiod)變化後誘導脫碘酶Dio2與Dio3交互表現(Yoshimura et al., 2003),將甲狀腺素 T4和失活的T3(r T3) 轉為具有活性的T3和T2,使GnRH末梢神經釋放GnRH至血液中(Dawson, 1999; Yamamura, Hirunagi, Ebihara, & Yoshimura, 2004; Yasuo et al., 2005),GnRH誘導腦下垂體分泌FSH、LH至睪丸。在過去研究發現鳥類睪丸體積在繁殖季與非繁殖季間變化顯著(Dawson, King, Bentley, & Ball, 2001; Islam, Bo Zhu, Aoyama, & Sugita, 2010; Young & Nelson, 2001),而荷爾蒙與睪丸大小呈現正相關(E. Haase, Sharp, & Paulke, 1975; Tae et al., 2005),繁殖季時荷爾蒙濃度提高使得細精管內精細胞大量進行產精作用。養鴨是台灣重要家禽產業之一,其中菜鴨(Tsaiya duck, Anas platyrhynchos var. domestica)與番鴨(Cairina moschata)分別是台灣鴨蛋產業及肉鴨產業的主要來源,在長期馴化過程中,菜鴨保留高產蛋的特性且能夠全年繁殖,而番鴨仍保留季節性繁殖特性,但目前對於菜鴨不具季節性的研究甚少,本研究希望透過跨物種的水禽類性荷爾蒙與性腺間的關聯性,探討菜鴨非季節性繁殖的原因。
我們假設菜鴨非季節性繁殖的原因是受到全年皆高濃度的荷爾蒙調控,使得睪丸全年在繁殖狀態。利用ELISA及Paper-based ELISA檢測菜鴨及番鴨9週齡至78週齡Testosterone及性荷爾蒙(FSH、LH)和催乳素(Prolactin)的年度變化。性成熟後FSH濃度在3月(春季)及6月(夏季)出現高峰,LH濃度在3月(春季)及12月(冬季),PRL濃度在7月(夏季)及12月(冬季)出現高峰,T濃度在2月(春季)及7月(夏季)出現高點。番鴨年度荷爾蒙變化中觀察到在性成熟後T濃度在5月(春季)及11月(冬季)高,FSH及LH都在7月(夏季)及11月(冬季)有高點,PRL濃度則沒有明顯變化。菜鴨睪丸平均重64.09±3.63克,番鴨睪丸重量平均25.36±6.61克。同時我們藉由腸繫膜移植的方式將菜鴨與番鴨睪丸互換的實驗,在實驗中發現移植入番鴨的菜鴨睪丸(番鴨菜)在番鴨不具季節變化的荷爾蒙調控下,細精管仍然有SYCP3表現,在DAPI染色中也可以看出成熟精子生成;而番鴨睪丸在菜鴨體內(菜鴨番)則沒有產精作用進行。藉由荷爾蒙觀察,我們發現菜鴨在馴化後荷爾蒙仍然具有季節性變化,並不是因為荷爾蒙變異,而是在睪丸接受荷爾蒙訊號過程變異,使睪丸能夠全年產精。另外,在實驗過程中也發現番鴨經多年育種飼養後出現少數荷爾蒙不受季節性變化的個體。關於調控菜鴨睪丸不受季節性影響的原因及其分子機制仍需未來進一步研究。

Organism in temperate zone will have different physiological behavior according to seasonal variation, like breeding or hibernate. To save energy consumption, they need to aware when the seasonal is going to transform. Seasonal variation depend on temperature, humidity, and photoperiod and so on. Among them, photoperiod is considered to be the most relevant about seasonal breeding through Hypothalamus-pituitary-gonadal axis(H-P-G axis) (ONO et al., 2009). To long-day breeder, hypothalamus sense photoperiod and regulate Dio2 and Dio3 expression, induce T4 and inactive T3 (rT3) transform to active T3 and T2 individually (Yoshimura et al., 2003). Subsequently, T3 causes morphological changes in the GnRH nerve terminals and glial processes, thus GnRH secrete into hypophyseal portal blood (Dawson, 1999; Yamamura et al., 2004; Yasuo et al., 2005), then induce gonadotropin (FSH and LH) secretion from the anterior pituitary. Previous research show that avian changes gonadal size dramatically during breeding and non-breeding season (Dawson et al., 2001; Islam et al., 2010; Young & Nelson, 2001). In addition, hormone treatments can induce gonad into breeding season (Girling, Bennett, & Cockrem, 2002). Duck farming is an important poultry farming in Taiwan. Among them, Tsaiya duck (Anas platyrhynchos var. domestica) and Muscovy (Cairina moschata) are main source of duck egg and duck meat individually. After domestication, Tsaiya duck become non-seasonal breeder, and conserve high egg-production characteristic. On the other hand, Muscovy is a long-day seasonal breeder. However, the mechanism about non-seasonal breeder, Tsaiya duck, still unknown. The purpose of this study was to connect the correlation of sex between sex hormone and gonad in Tasiya duck and Muscovy.
The hormone annual variation (included FSH, LH, prolactin and testosterone) was tested by ELISA and Paper-based ELISA. In Tsaiya duck, the FSH concentration was higher on March and June, the LH concentration was higher on March and December, the prolactin concentration was higher on July and December, and the testosterone concentration was higher on February and July. In Muscovy, the FSH and LH concentration was higher on July and November, the testosterone concentration was higher on May and November, and the prolactin concentration was no obviously fluctuation. The testis weight in Tsaiya duck was 64.09±3.63 g, and in Muscovy was 25.36±6.61 g. Meanwhile, we change the testis between Tsaiya duck and Muscovy through mesentery. In the present study, we found SYCP3 expression and elongated sperm in seminiferous tubule in Muscovy Tsai. Besides, the seminiferous tubule of Tsaiya duck Mus has no spermatogenesis. In the conclusion, the hormone fluctuation of Tsaiya duck still change depend on seasonal change after demonstration. The reason of non-seasonal breeding in Tsaiya duck may on testis.
URI: http://hdl.handle.net/11455/99401
Rights: 同意授權瀏覽/列印電子全文服務,2022-02-13起公開。
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.