Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99402
標題: 卷柏科植物小葉矽晶體之多樣性
Diversity of silica bodies on microphylls of Selaginellaceae
作者: 李紫昀
Tzu-Yun Lee
關鍵字: 卷柏;葉片;矽晶體;矽元素;親緣關係;檢索表;形態;分布;鑑定;特徵;Selaginellaceae;Selaginella;microphylls;silica bodies;silicon;form;distribution;identification;character
引用: 李紹輔。2017。卷柏科植物小葉結構及葉綠體多樣性的探討。國立中興大學。台中市 (Li, S. F. 2017. Microphyll structure and chloroplast diversity in Selaginellaceae, Department of Life Science, National Chung Hsing University, Taichung.) 張宜豪。2016。卷柏植物矽晶體於標本中的保存情形與形態多樣性。國立中興大學。台中市 Agarie, S., N. Hanaoka, O. Ueno, A. Miyazaki, F. Kubota, W. Agata, and P. B. Kaufman. 1998. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science 1: 96-103. Agarie, S., W. Agata, H. Uchida, F. Kubota, and P. B. Kaufman. 1996. Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. Journal of Experimental Botany 47: 655-660. Anala, R., and P. Nambisan. 2015. Study of morphology and chemical composition of phytoliths on the surface of paddy straw. Paddy and Water Environment 13: 521-527. Arrigo, N., J. Therrien, C. L. Anderson, M. D. Windham, C. H. Haufler, and M. S. Barker. 2013. A total evidence approach to understanding phylogenetic relationships and ecological diversity in Selaginella subg. Tetragonostachys. American Journal of Botany 100: 1672-1682. Bauer, P., R. Elbaum, and I. M. Weiss. 2011. Calcium and silicon mineralization in land plants: transport, structure and function. Plant Science 180: 746-756. Bienfait, A., L. Waterkeyn, and L. Ermin. 1985. Importance des verrues foliaires silicifiées dans la systématique des Selaginella. Observations en microscopie électronique à balayage (MEB). Bulletin du Jardin botanique national de Belgique/Bulletin van de Nationale Plantentuin van Belgie 73-81 Boetsch, J., J. Chin, M. Ling, and J. Croxdale. 1996. Elevated carbon dioxide affects the patterning of subsidiary cells in Tradescantia stomatal complexes. Journal of Experimental Botany 47: 925-931. Büchsenschütz, K., I. Marten, D. Becker, K. Philippar, P. Ache, and R. Hedrich. 2005. Differential expression of K+ channels between guard cells and subsidiary cells within the maize stomatal complex. Planta 222: 968-976. Calandra, I., K. Zub, P. A. Szafrańska, A. Zalewski, and G. Merceron. 2016. Silicon-based plant defences, tooth wear and voles. Journal of Experimental Biology 219: 501-507. Chauhan, D. K., D. K. Tripathi, P. Sinha, and S. P. Tiwari. 2009. Biogenic silica in some pteridophytes. Bionature 1-9. Chen, C. H., and J. Lewin. 1969. Silicon as a nutrient element for Equisetum arvense. Canadian Journal of Botany 47: 125-131. Chang, H. M., J. F. Chen, P. F. Lu, S. J. Moore, J. C. Wang, and W. L. Chiou. 2009 Supplements to the lycophytes in Taiwan a newly recorded species Selaginella lutchuensis Koidz. (Selaginellaceae). Taiwania 54: 88-92 Chang, H. M., P. F. Lu, T. C. Hsu, and W. L. Chiou. 2011. Selaginella devolii (Selaginellaceae), a new species from Taiwan. Blumea 56: 21-23 Chang, H. M., W. L. Chiou, and J. C. Wang. 2012. Flora of Taiwan, Selaginellaceae. Endemic Species Research Institute. Currie, H. A., and C. C. Perry. 2007. Silica in plants: biological, biochemical and chemical studies. Annals of Botany 100: 1383-1389. Datnoff, L. E., F. A. Rodrigues, and K. W. Seebold. 2007. Silicon and plant disease. Mineral Nutrition and Plant Disease 233-246. Dengler, N. G., and E. Y. Lin. 1980. Electron microprobe analysis of the distribution of silicon in the leaves of Selaginella emmeliana. Canadian Journal of Botany 58: 2459-2466. Epstein, E. 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences 91: 11-17. Epstein, E. 1999. Silicon. Annual Review of Plant Biology 50: 641-664. Epstein, E. 2009. Silicon: its manifold roles in plants. Annals of Applied Biology 155: 155-160. Frings, P. J., W. Clymans, G. Fontorbe, L. Christina, and D. J. Conley. 2016. The continental Si cycle and its impact on the ocean Si isotope budget. Chemical Geology 425: 12-36. Fauteux, F., W. Rémus-Borel, J. G. Menzies, and R. R. Bélanger. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology letters 249: 1-6. Gibson, R. H. 1897. Contributions towards a Knowledge of the Anatomy of the Genus Selaginella, Spr. Annals of Botany 11: 123-155. Goldstein, J. I., D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy. 2017. Scanning electron microscopy and X-ray microanalysis. Springer. Graçano, D., A. A. Azevedo, J. Prado. 2001. Anatomia foliar das espécies de Pteridaceae do Parque Estadual do Rio Doce (PERD) – MG. Revista brasileira de Botânica 24: 333-347. Hartley, S. E., R. N. Fitt, E. L. McLarnon, and R. N. Wade. 2015. Defending the leaf surface: intra-and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply. Frontiers in plant science 6: 35. Hossain, M. T., K. Soga, K. Wakabayashi, S. Kamisaka, S. Fujii, R. Yamamoto, and T. Hoson. 2007. Modification of chemical properties of cell walls by silicon and its role in regulation of the cell wall extensibility in oat leaves. Journal of Plant Physiology 164: 385-393. Huang, C. L., P. Chesson, S. F. Li, J. W. Liu, H. M. Chang, I. Valdespino, N. Salazar, C. Chesson, H. Oppenheimer, A. Bakutis, P. Saenger, J. W. H. Yong, S. Das, B. Adjie, R. Kiew, N. Nadkarni, M. F. Kao and C. R. Sheue. 2018. Recent chloroplast diversification in the ancient genus Selaginella. The 7th Asian Symposium of Ferns and Lycophytes, 16th-18th October, Taipei, Taiwan. Isa, M., S. Bai, T. Yokoyama, J. F. Ma, Y. Ishibashi, T. Yuasa, and M. Iwaya-Inoue. 2010. Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1. Plant and Soil 331: 361-375. Jaapar, K. H., and A. Yakin. 2017. X-ray Microanalysis using Energy Dispersive X-ray spectroscopy. University of Nottingham. Jermy, A. C. 1990. Selaginellaceae. p. 39-45. In: K. Kubizki, K. U. Kramer and P. S. Green, editors. The families and genera of vascular plants. Volume 1. Springer-Verlag, New York, USA. Jiang, X. M., and Y. Zhou. 1989. SEM observation on crystals and silica in wood species of Chinese Gymnospermae. Acta Bot. Sin, 31: 835-840. Jones, L. H. P., and K. A. Handreck. 1965. Studies of silica in the oat plant. Plant and Soil 23: 79-96. Jones, L. H. P., and K. A. Handreck. 1967. Silica in soils, plants, and animals. p. 107-149. In: Advances in Agronomy. Academic Press. Vol. 19. Kameník, J., J. Mizera, and Z. Řanda. 2013. Chemical composition of plant silica phytoliths. Environmental Chemistry Letters 11: 189-195. Kaufman, P. B., W. C. Bigelow, R. Schmid, and N. S. Ghosheh. 1971. Electron microprobe analysis of silica in epidermal cells of Equisetum. American Journal of Botany 58: 309-316. Kaufman, P. B., P. Dayanandan, C. I. Franklin, and Y. Takeoka. 1985. Structure and function of silica bodies in the epidermal system of grass shoots. Annals of botany 55: 487-507. Klaus, K. V., C. Schulz, D. S. Bauer, and T. Stützel. 2016. Historical biogeography of the ancient lycophyte genus Selaginella: early adaptation to xeric habitats on Pangea. Cladistics. Lee, T. Y., J. W. Liu, H. M. Chang, J. Y. Chen, S. F. Li, C. L. Huang, and C R. Sheue. 2016. Novel forms and patterns: the diversity of silica bodies of Selaginella in Taiwan. The 36th Microscopy Society of Taiwan, 9th July, Taipei, Taiwan. Lester, T. 2009. The fourth part of the world: the race to the ends of the earth, and the epic story of the map that gave America its name. Simon and Schuster. Ma, J. F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, and M. Yano. 2006. A silicon transporter in rice. Nature 440: 688. Ma, J. F., and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science 11: 392-397. Ma, Q., F. Li, and C. Li. 2005. Leaf epidermal structure and stomatal parameters of the genus {sl Taxodium} (Taxodiaceae). Acta Phytotaxonomica Sinica 43: 517-525. Madella, M., A. Alexandré, and T. Ball. 2005. International code for phytolith nomenclature 1.0. Annals of Botany 96: 253-260. Mazumdar, J., and R. Mukhopadhyay. 2009. Phytoliths of some lycopods. Indian Fern Journal 26: 132-136. Mazumdar, J. 2010. Phytoliths of pteridophytes. South African Journal of Botany 77: 10-19. Morita, S., F. J. Giessibl, E. Meyer, and R. Wiesendanger. Eds. 2015. Noncontact atomic force microscopy. Springer. Vol. 3. Nixon, K. C., and J. M. Carpenter. 1993. On outgroups. Cladistics 9: 413-426. Perry, C. C., and T. Keeling-Tucker. 2000. Biosilicification: the role of the organic matrix in structure control. JBIC Journal of Biological Inorganic Chemistry 5: 537-550. Perveen, A. N. J. U. M., R. Abid, and R. Fatima. 2007. Stomatal types of some dicots within flora of Karachi, Pakistan. Pakistan Journal of Botany 39: 1017. Piperno, D. R., and D. M. Pearsall. 1998. The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Prychid, C. J., P. J. Rudall, and M. Gregory. 2003. Systematics and biology of silica bodies in monocotyledons. The Botanical Review 69: 377-440. Runcorn, S. K. 2013. Continental drift. Elsevier. Vol. 3. Samuels, A. L., A. D. M. Glass, D. L. Ehret, and J. G. Menzies. 1991. Mobility and deposition of silicon in cucumber plants. Plant, Cell and Environment 14: 485-492. Sangster, A. G., M. J. Hodson, and H. J. Tubb. 2001. Silicon deposition in higher plants. p. 85-113.In: Studies in Plant Science. Vol. 8. Scurfield, G., A. J. Michell, and S. R. Silva. 1973. Crystals in woody stems. Botanical Journal of the Linnean Society 66: 277-289. Squire, G. R., and T. A. Mansfield. 1972. A simple method of isolating stomata on detached epidermis by low pH treatment: observations of the importance of the subsidiary cells. New Phytologist 71: 1033-1043. Sommer, M., D. Kaczorek, Y. Kuzyakov, and J. Breuer. 2006. Silicon pools and fluxes in soils and landscapes—a review. Journal of Plant Nutrition and Soil Science 169: 310-329. Street‐Perrott, F. A., and P. A. Barker. 2008. Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surface Processes and Landforms 33: 1436-1457. Sundue, M. 2009. Silica bodies and their systematic implications in Pteridaceae (Pteridophyta). Botanical Journal of the Linnean Society 161: 422-435. Trembath-Reichert, E., J. P. Wilson, S. E. McGlynn, and W. W. Fischer. 2015. Four hundred million years of silica biomineralization in land plants. Proceedings of the National Academy of Sciences 112: 5449-5454. Tsai, J. L., and W.C. Shieh. 1994. Selaginellaceae p. 45-57. In: Hsieh, C. F., T. C. Huang, H. Keng, W. C. Shieh, J. C. Tsai, J. M. Hu, C. F. Shen, K. C. Yang, and S. Y. Yang (eds.) Flora of Taiwan, 2nd ed. Vol. 1. National Taiwan University Press, Taipei. Wallis, L. 2003. An overview of leaf phytolith production patterns in selected northwest Australian flora. Review of palaeobotany and palynology 125: 201-248. Weststrand, S., and P. Korall. 2016. A subgeneric classification of Selaginella (Selaginellaceae). American Journal of Botany 103: 2160-2169. Weststrand, S., and P. Korall. 2016. Phylogeny of Selaginellaceae: There is value in morphology after all!. American Journal of Botany 103: 2136-2159. Williams, D. E., and J. Vlamis. 1957. Manganese toxicity in standard culture solutions. Plant and Soil 8: 183-193. Williams, N. H. 1979. Subsidiary cells in the Orchidaceae: their general distribution with special reference to development in the Oncidieae. Botanical Journal of the Linnean Society 78: 41-66. Yamaji, N., N. Mitatni, and J. F. Ma. 2008. A transporter regulating silicon distribution in rice shoots. The Plant Cell 20: 1381-1389. Zhang, C., L. Wang, W. Zhang, and F. Zhang. 2013. Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis?. Plant and soil 372: 137-149. Zhou, X. M., and L. B. Zhang. 2015. A classification of Selaginella (Selaginellaceae) based on molecular (chloroplast and nuclear), macromorphological, and spore features. Taxon 64: 1117-1140.
摘要: 
矽元素是地表中僅次於氧的第二豐富元素。矽酸鹽礦物經風化遇水溶解形成矽酸(silicic acid, H4SiO4),矽酸被植物吸收利用成生物矽,並以矽質體(phytolith)的方式存在於植物體內。其中,木賊和被子植物中的禾本科與莎草科已被證實植物體內具大量的矽沉積,而苔蘚、石松及蕨類等若干物種亦具有不同形態的矽晶體。卷柏科植物的矽晶體雖有零星的報導,但對其了解仍十分有限。本研究首次針對卷柏小葉表面的矽晶體特徵進行多樣性研究,希望能對本科植物矽晶體的多樣性、分類價值和此特徵和親緣或環境關係的關聯有進一步的瞭解。
卷柏科(Selaginellaceae, 石松植物門)僅有一屬––卷柏屬(Selaginella),目前卷柏屬植物約有800種。本研究的材料取自美洲、歐洲、亞洲、澳洲和夏威夷等地的76個卷柏植物,已接近本科全世界物種數的十分之一,且涵括了七個亞屬。將各種成熟的卷柏葉片經清洗後,以掃描式電子顯微鏡觀察矽晶體於葉表的形態與分布類型,且輔以徒手切片確認矽晶體的沉積位置與形態,並使用原子力顯微鏡(atomic force microscope, AFM)製作出矽晶體於葉表的3D模擬圖。為了解矽晶體中的矽元素含量,以X射線能量散布分析儀(energy dispersive X-ray spectrometer, EDS)對矽晶體做位點分析並製作出葉表的元素含量分布圖。結合卷柏科植物以葉綠體rbcL建構的親緣關係樹,以了解矽晶體和親緣關係的關聯。
研究結果發現74種卷柏葉表具有矽晶體沉積,此顯示矽晶體為卷柏植物普遍存在之特徵。卷柏矽晶體沉積的形態依國際矽晶體命名法規(International Code for Phytolith Nomenclature, ICPN),共命名10種形態,分別為乳突狀、微乳突狀、小顆粒狀、薄板狀、圓錐形、腎形、圓平台形、針形、隆凸狀矽晶體和邊緣長細胞細胞壁之矽累積。
以EDX分析卷柏的小葉顯示葉表的結晶突起物確實為矽晶體,且大部分的矽晶體所含的矽元素量皆高於10%且大致穩定;但微乳突狀、薄板狀和乳突狀矽晶體的矽含量則較低。其中邊緣長細胞細胞壁之矽累積的矽含量最高且矽含量差異也最大(14.98-38.77%),乳突狀矽晶體的平均矽含量最低(0.93-5.08%)。
矽晶體於一個細胞的排列方式有八種,於葉表的分布類型可分成九種。這些特徵與物種相關,且多數物種背葉的腹面具較少或無矽晶體分布。其中,沿著細胞邊緣排列的圓錐形矽晶體僅於復甦卷柏中發現。卷柏葉表常見的六種細胞類型(等徑細胞、長形細胞、邊緣長細胞、異形細胞、毛茸和少數的保衛細胞)均可發現矽元素沉積,但其中保衛細胞者並無特定及明顯晶體形態。
生長在開闊地的陽性卷柏(多為非背腹性之枝條和同型葉)僅發現針形、圓錐形和薄版狀矽晶體,而生長於森林下層或陰暗處的卷柏 (均為背腹性枝條和異型葉) 則有高度多樣性的矽晶體形態(十種)。本研究發現植株的生長形態(匍匐或直立)並不影響矽晶體特徵差異,但意外發現生長於環境溼度極高的卷柏多具有葉緣氣孔。
本研究中,僅Selaginella亞屬之物種(Selaginella deflexa)和部分Ericetorum亞屬之物種(S. gracillima)不具有矽晶體,結合卷柏親緣關係樹發現此兩種卷柏皆為基本群的較原始物種,因此可推測最古老的卷柏可能不具有矽晶體。另外,亦發現親緣關係較接近的物種通常具有相似的矽晶體形態,但矽晶體的葉表分布類型卻與親緣關係無明顯的相關性。
本研究證實不同物種卷柏的矽晶體形態與分布皆具有其獨特性,且矽晶體特徵於各物種中皆具有穩定性。因此,卷柏葉表之矽晶體特徵具有極高的分類價值,且可顯示出古老的卷柏科對矽元素吸收沈積在3億5千萬年的演化過程中的變化。卷柏矽晶體的形態似與植物生長的光環境有關(陽性卷柏多為圓錐形,而陰性卷柏則有極多樣的矽晶體形態),此有趣的結果顯示矽晶體的光學效應值得更進一步探討。

Silicon (Si) is the second abundant element on the earth surface. Silicate minerals can be weathered and release silicic acid (H4SiO4). Plants take up silicic acid and precipitate it as biogenic silica structures named phytoliths. It has been shown that Equisetum, Poaceae and Cyperaceae have been proved that they can precipitate Si inside cells or on cell walls. Different forms of silica bodies were also found in bryophyte, lycophyte, and ferns. We still have poor understanding and very little information of silica bodies of Selaginellaceae, although a few species had been studied. This is the first systematic study of silica bodies on microphylls of Selaginellaceae. The aims are to explore the diversity of silica bodies, to evaluate their taxonomic value, and to understand find the relationships between silica bodies and phylogeny in Selaginellaceae.
Selaginella is the only genus in Selaginellaceae (Lycophyta) which comprises ca. 800 species in the world. In this study, 76 Selaginella taxa, nearly one-tenth species of Selaginella collected from America, Europe, Asia, Australia, and Hawaii were studied. Healthy and mature leaves (microphylls) were detached and cleaned before various microscopic observations. The forms and patterns (on leaves surface) of silica bodies were observed by scanning electron microscope. Free hand sections were conducted to confirm the deposition site and forms of silica bodies. The 3D models of silica bodies were constructed by atomic force microscope (AFM), and the content of composition elements of silica bodies were measured by an energy dispersive X-ray spectrometer (EDS)Last, the relationships between silica bodies and the phylogenetic tree of Selaginellaceae constructed from chloroplast rbcL sequences were assessed.
A total of 74 out of the 76 species of Sellaginella studied were found to have silica bodies found on their leaf surfaces. The results show that silica bodies are one of the general features of Selaginella. Following to the International Code for Phytolith Nomenclature, 10 forms of silica bodies in Selaginella were identified. They are papillae, light-protruded papillae, granular, thin-tabular, conical, reniform, rondel, acicular, sinuate carinate and marginal long cell wall with silicon.
The results of EDS proved that the peglike projections on leaves of Selaginella are silica bodies. Most of silica bodies contain more then 10% of silicon, but silicon contents of papillae, light-protruded papillae, and thin-tabular silica bodies are less than 10%. Among them, the silicon content of granular silica bodies varies greatly (0.05-22.32%), and papillae silica bodies have the lowest content of silicon (0.93-5.08%).
There are eight arrangements of silica body on one epidermal cell, and nine patterns of silica bodies on Selaginella leaves were delineated. Generally very few silica bodies or no silica bodies distributed on the ventral side of dorsal leaves in most Selaginella species with anisophylls. The pattern of conical silica bodies scattered along cell margins of an epidermal cell were only can found in resurrection Selaginella. Silica bodies can be found in all of six common cell types (isodiametric cell, elongated cell, marginal long cell, idioblast, trichome, and few guard cells) of Selaginella, but guard cells only deposit silicon (without specific projections).
For the Selaginella species living in sun exposed environments (mostly non-dorsiventral, isophyllous), acicular, conical and thin-tabular silica bodies are their major silica bodies. In contrast, the Selaginella species (all dorsiventral leaves and anisophllous) growing in the understorey of forests (less sunlight) have high diversity of forms of silica bodies (10 forms). There are no relations between the character of silica bodies and plant morphology (creeping or erect) of Selaginella. Unexpectedly, an unusual stomatal type, marginal stomata, was commonly observed in the species living in extreme humid environments (water fall, stream and wet cliff).
The result shows that there are no silica bodies in the subgenus Selaginella (Selaginella deflexa) and some of the subgenus Ericetorum (S. gracillima). Since these they are the basal group of this family, it implies that the ancestors of Selaginella might not have silica bodies. In addition, the species with close relationship usually contain similar forms of silica bodies, but there are no relations between patterns of silica bodies (on leaves) and phylogeny of Selaginella.
This study has revealed high diversity of silica bodies of Selaginella and confirmed these traits are stable and species-specific. The characters of silica bodies have high taxonomic value to be an aid for solving the identification challenge of Selaginellaceae. Moreover, the change of ability of silicon deposition of Selaginella species during the past 350 million years it is uncovered. A close relation between the forms of silica bodies and light environments implies that the possible optical effects of silica bodies of Selaginella are worthy to explore.
URI: http://hdl.handle.net/11455/99402
Rights: 同意授權瀏覽/列印電子全文服務,2021-02-14起公開。
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.