Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99403
標題: 探討吡咯喹啉醌(Pyrroloquinoline quinone)於促進北蕉生長及生物防治之研究
A study of pyrroloquinoline quinone on Pei-Chiao (Musa spp.) growth and biocontrol improvement
作者: 余曼筠
Man-Yun Yu
關鍵字: Burkholderia sp. 869T2;Pyrroloquinoline quinone;北蕉;香蕉黃葉病;植物促進生長;Burkholderia sp. 869T2;Pyrroloquinoline quinone;Fusarial wilt;Pei-Chiao;banana;plant-growth
引用: Appleford, N. E., Evans, D. J., Lenton, J. R., Gaskin, P., Croker, S. J., Devos, K. M., . . . Hedden, P. (2006). Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta, 223(3), 568-582. doi: 10.1007/s00425-005-0104-0 Bacon, C. W., Yates, I. E., Hinton, D. M., & Meredith, F. (2001). Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives, 109(Suppl 2), 325. Bai, T. T., Xie, W. B., Zhou, P. P., Wu, Z. L., Xiao, W. C., Zhou, L., . . . Li, H. P. (2013). Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. PLoS One, 8(9), e73945. doi: 10.1371/journal.pone.0073945 Bevivino, A., Sarrocco, S., Dalmastri, C., Tabacchioni, S., Cantale, C., & Chiarini, L. (1998). Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology, 27(3), 225-237. Brzezowski, P., Richter, A. S., & Grimm, B. (2015). Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(9), 968-985. doi: https://doi.org/10.1016/j.bbabio.2015.05.007 Choi, O., Kim, J., Kim, J. G., Jeong, Y., Moon, J. S., Park, C. S., & Hwang, I. (2008). Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol, 146(2), 657-668. doi: 10.1104/pp.107.112748 Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951-4959. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clément, C., & Barka, E. A. (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology, 71(4), 1685-1693. D’Auria, J. C., & Gershenzon, J. (2005). The secondary metabolism of Arabidopsis thaliana: growing like a weed. Current opinion in plant biology, 8(3), 308-316. Di, X., Takken, F. L., & Tintor, N. (2016). How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. Front Plant Sci, 7, 170. doi: 10.3389/fpls.2016.00170 Douglas, A. (1993). The nutritional quality of phloem sap utilized by natural aphid populations. Ecological Entomology, 18(1), 31-38. Fernandes, J. S., Angelo, P. C., Cruz, J. C., Santos, J. M., Sousa, N. R., & Silva, G. F. (2016). Post-transcriptional silencing of the SGE1 gene induced by a dsRNA hairpin in Fusarium oxysporum f. sp cubense, the causal agent of Panama disease. Genet Mol Res, 15(2). doi: 10.4238/gmr.15027941 Ghag, S. B., Shekhawat, U. K. S., & Ganapathi, T. R. (2015). Fusarium wilt of banana: biology, epidemiology and management. International Journal of Pest Management, 61(3), 250-263. doi: 10.1080/09670874.2015.1043972 Guo, Y. B., Li, J., Li, L., Chen, F., Wu, W., Wang, J., & Wang, H. (2009). Mutations that disrupt either the pqq or the gdh gene of Rahnella aquatilis abolish the production of an antibacterial substance and result in reduced biological control of grapevine crown gall. Applied and Environmental Microbiology, 75(21), 6792-6803. Han, S. H., Kim, C. H., Lee, J. H., Park, J. Y., Cho, S. M., Park, S. K., . . . Kim, Y. C. (2008). Inactivation of pqq genes of Enterobacter intermedium 60-2G reduces antifungal activity and induction of systemic resistance. FEMS Microbiol Lett, 282(1), 140-146. doi: 10.1111/j.1574-6968.2008.01120.x Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in microbiology, 16(10), 463-471. Hedden, P., Kunert, K., & Schlüter, U. (2013). Isolation, Characterization, and Expression of the Rice sd-1 (GA20ox) Gene Ortholog in Eragrostis tef AU - Gebre, Endale. Journal of Crop Improvement, 27(5), 507-527. doi: 10.1080/15427528.2013.797945 Ho, Y.-N. (2013). 植物內共生菌對於植生復育與生物防治的應用與研究. 中興大學生命科學系所學位論文, 1-106. Jeschke, W. D., & Hartung, W. (2000). Root-shoot interactions in mineral nutrition. Plant and Soil, 226(1), 57-69. JESCHKE, W. D., & PATE, J. S. (1991). Modelling of the partitioning, assimilation and storage of nitrate within root and shoot organs of castor bean (Ricinus communis L.). Journal of Experimental Botany, 42(9), 1091-1103. Jin, Z. M., Sha, W., Zhang, Y. F., Zhao, J., & Ji, H. (2013). Isolation of Burkholderia cepacia JB12 from lead-and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover. Canadian journal of microbiology, 59(7), 449-455. Kloepper, J., Schroth, M., & Miller, T. (1980). Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology, 70(11), 1078-1082. Kumar, D., & Klessig, D. F. (2003). High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences, 100(26), 16101-16106. Larkin, R. M. (2016). Tetrapyrrole Signaling in Plants. Front Plant Sci, 7, 1586-1586. doi: 10.3389/fpls.2016.01586 Lee, Y.-A., & Chan, C.-W. (2007). Molecular typing and presence of genetic markers among strains of banana finger-tip rot pathogen, Burkholderia cenocepacia, in Taiwan. Phytopathology, 97(2), 195-201. Li, C.-y., Deng, G.-m., Yang, J., Viljoen, A., Jin, Y., Kuang, R.-b., . . . Yi, G.-j. (2012). Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics, 13(1), 374. doi: 10.1186/1471-2164-13-374 Li, L., Jiao, Z., Hale, L., Wu, W., & Guo, Y. (2014). Disruption of gene pqqA or pqqB reduces plant growth promotion activity and biocontrol of crown gall disease by Rahnella aquatilis HX2. PLoS One, 9(12), e115010. doi: 10.1371/journal.pone.0115010 Lo, S.-F., Ho, T.-H. D., Liu, Y.-L., Jiang, M.-J., Hsieh, K.-T., Chen, K.-T., . . . Yu, S.-M. (2017). Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnology Journal, 15(7), 850-864. doi: doi:10.1111/pbi.12681 Matsushita, K., Toyama, H., Yamada, M., & Adachi, O. (2002). Quinoproteins: structure, function, and biotechnological applications. Applied Microbiology and Biotechnology, 58(1), 13-22. Misra, H. S., Khairnar, N. P., Barik, A., Indira Priyadarsini, K., Mohan, H., & Apte, S. K. (2004). Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett, 578(1-2), 26-30. doi: 10.1016/j.febslet.2004.10.061 Misra, H. S., Rajpurohit, Y. S., & Khairnar, N. P. (2012). Pyrroloquinoline-quinone and its versatile roles in biological processes. J Biosci, 37(2), 313-325. Newman, L. A., & Reynolds, C. M. (2005). Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends in Biotechnology, 23(1), 6-8. Otieno, N., Lally, R., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K., & Dowling, D. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6(745). doi: 10.3389/fmicb.2015.00745 P, J., Phillips, C. a. L., Croker, S. J., García-Lepe, R., Lewis, M. J., & Hedden, P. (1999). Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. The Plant Journal, 17(5), 547-556. doi: doi:10.1046/j.1365-313X.1999.00410.x Peoples, M. B., Atkins, C. A., Pate, J. S., & Murray, D. R. (1985). Nitrogen nutrition and metabolic interconversions of nitrogenous solutes in developing cowpea fruits. Plant Physiol, 77(2), 382-388. Pratelli, R., & Pilot, G. (2014). Regulation of amino acid metabolic enzymes and transporters in plants. Journal of Experimental Botany, 65(19), 5535-5556. doi: 10.1093/jxb/eru320 Puehringer, S., Metlitzky, M., & Schwarzenbacher, R. (2008). The pyrroloquinoline quinone biosynthesis pathway revisited: A structural approach. BMC Biochemistry, 9(1), 8. doi: 10.1186/1471-2091-9-8 Ramon, M., Rolland, F., & Sheen, J. (2008). Sugar sensing and signaling. The Arabidopsis Book, 6, e0117-e0117. doi: 10.1199/tab.0117 Ramskold, D., Wang, E. T., Burge, C. B., & Sandberg, R. (2009). An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol, 5(12), e1000598. Rico, A., & Preston, G. M. (2008). Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant-Microbe Interactions, 21(2), 269-282. Sass, A. M., Van Acker, H., Förstner, K. U., Van Nieuwerburgh, F., Deforce, D., Vogel, J., & Coenye, T. (2015). Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315. BMC Genomics, 16(1), 775. Schertl, P., Danne, L., & Braun, H. P. (2017). 3-Hydroxyisobutyrate Dehydrogenase Is Involved in Both, Valine and Isoleucine Degradation in Arabidopsis thaliana. 175(1), 51-61. doi: 10.1104/pp.17.00649 Schmidt, S., Blom, J. F., Pernthaler, J., Berg, G., Baldwin, A., Mahenthiralingam, E., & Eberl, L. (2009). Production of the antifungal compound pyrrolnitrin is quorum sensing‐regulated in members of the Burkholderia cepacia complex. Environmental microbiology, 11(6), 1422-1437. Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., . . . Nowak, J. (2005). Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol, 55(Pt 3), 1187-1192. doi: 10.1099/ijs.0.63149-0 Shen, Y. Q., Bonnot, F., Imsand, E. M., RoseFigura, J. M., Sjölander, K., & Klinman, J. P. (2012). Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry, 51(11), 2265-2275. doi: 10.1021/bi201763d Smeekens, S., Ma, J., Hanson, J., & Rolland, F. (2010). Sugar signals and molecular networks controlling plant growth. Current opinion in plant biology, 13(3), 273-278. doi: https://doi.org/10.1016/j.pbi.2009.12.002 Solomon, P. S., Tan, K. C., & Oliver, R. P. (2003). The nutrient supply of pathogenic fungi; a fertile field for study. Molecular Plant Pathology, 4(3), 203-210. Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., . . . van der Lelie, D. (2009). Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and Environmental Microbiology, 75(3), 748-757. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., . . . Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols, 7(3), 562-578. Xiong, L. B., Sekiya, J., & Shimose, N. (1988). Stimulation of Lilium pollen germination by pyrroloquinoline quinone. Agricultural and biological chemistry, 52(4), 1065-1066. Xiong, L. B., Sekiya, J., & Shimose, N. (1990). Occurrence of pyrroloquinoline quinone (PQQ) in pistils and pollen grains of higher plants. Agricultural and biological chemistry, 54(1), 249-250. Yadeta, K. A., & BP, J. T. (2013). The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci, 4, 97. doi: 10.3389/fpls.2013.00097 Yasuda, M., Isawa, T., Shinozaki, S., Minamisawa, K., & Nakashita, H. (2009). Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Bioscience, biotechnology, and biochemistry, 73(12), 2595-2599. Yoder-Himes, D., Chain, P., Zhu, Y., Wurtzel, O., Rubin, E., Tiedje, J. M., & Sorek, R. (2009). Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proceedings of the National Academy of Sciences, 106(10), 3976-3981. 孫守恭. (2001). 臺灣果樹病害: 世維. 莊喻婷. (2017). 探討不同抗病程度香蕉品種之根分泌物對香蕉黃葉病原菌的影響. 中興大學生命科學系所學位論文, 1-58. 郭辰彤. (2015). 內共生菌應用於降低北蕉黃葉病及促進生長之研究. 中興大學生命科學系所學位論文, 1-100.
摘要: 
香蕉是世界上重要的糧食作物之一,但深受香蕉黃葉病害之影響導致產量受限,因此解決此問題為當前首要之任務。前人實驗結果證實有接種Burkholderia sp. 869T2的北蕉平均株高增加32.6公分,發病率降低21.1%。而在本研究中於溫室實驗中同樣驗證了869T2接種於北蕉之促進生長及抗病之效果,有效降低黃葉病的罹病程度。於轉錄基因體分析中發現869T2體內合成Pyrroloquinoline quinone (PQQ)之基因組有高表現量。藉由使用PQQ對北蕉進行生長測試,探討PQQ是否為促進北蕉生長之重要因子及抗香蕉黃葉病之作用。於添加PQQ作為促進生長因子之實驗結果中得知,添加100nM PQQ株高增加了2.2公分、健葉數增加了2.9葉及鮮重增加了1.1克;而在溫室感染實驗中PQQ組平均罹病度低於控制組。且於轉錄基因體中研判添加PQQ後北蕉促進生長及生物防治之反應,發現添加PQQ後可提高碳水化合物代謝、胺基酸代謝、光合作用、氧化作用及吉貝素合成酵素的高表現等可能為促進北蕉生長之因素,以及誘導植物抗病因子PR1之表現。

Banana is one of the most important food crops in the world, but it is deeply affected by the fusarial wilt, which leads to limited production. Therefore, solving this problem is the current priority. The results of previous experiments confirmed that the average plant height of Pei-Chiao with Burkholderia sp. 869T2 inoculated increased by 32.6 cm, and the incidence decreased by 21.1%. In this study, the effect of 869T2 inoculation on Pei-Chiao to promote growth and disease resistance was also verified in the greenhouse experiment, which effectively reduced the degree of fusarial wilt. In the transcriptome analysis, it was found that the genome of Pyroloquinoline quinone (PQQ) synthesized by 869T2 in vivo has high expression. The growth test of the Pei-Chiao was to explore whether PQQ is an important factor for promoting the growth of the Pei-Chiao and the role of resistan fusarial wilt. In promoting growth analysis, adding 100nM PQQ was proved that the plant height increased by 2.2 cm, the number of healthy leaves increased by 2.9 leaves, and the fresh weight increased by 1.1 g. In the greenhouse infection experiment, the average fusarial wilt in the PQQ was lower than that in the control. After adding PQQ to the transcript gene, the Pei-Chiao promoted the growth and biological control reaction. It was found that the addition of PQQ can improve carbohydrate metabolism, amino acid metabolism, photosynthesis, oxidation and high performance of gemcitabine synthetase. It may be a factor that promotes the growth of the northern banana and induces the performance of the plant resistance factor PR1.
URI: http://hdl.handle.net/11455/99403
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.