Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99404
標題: 操控雌性激素途徑對於家雞羽毛性別兩型性之影響
The effects of estrogen pathway manipulation on feather sexual dimorphism in chicken(Gallus gallus domesticus)
作者: 林家璿
Chia-Hsuan Lin
關鍵字: 閹割;雞;荷爾蒙;羽毛;性別兩型性;Castrated;Chicken;Serum sex hormone;feather;sexual dimorphism
引用: 1 Widelitz, R. B. et al. Molecular biology of feather morphogenesis: A testable model for evo-devo research. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 298B, 109-122, doi:10.1002/jez.b.29 (2003). 2 Yu, M. et al. The biology of feather follicles. Int J Dev Biol 48, 181-191, doi:10.1387/ijdb.031776my (2004). 3 Lin, C. M., Jiang, T. X., Widelitz, R. B. & Chuong, C. M. Molecular signaling in feather morphogenesis. Curr Opin Cell Biol 18, 730-741, doi:10.1016/j.ceb.2006.10.009 (2006). 4 Yue, Z., Jiang, T. X., Widelitz, R. B. & Chuong, C. M. Mapping stem cell activities in the feather follicle. Nature 438, 1026-1029, doi:10.1038/nature04222 (2005). 5 Mou, C. et al. Cryptic patterning of avian skin confers a developmental facility for loss of neck feathering. PLoS Biol 9, e1001028, doi:10.1371/journal.pbio.1001028 (2011). 6 Noramly, S., Freeman, A. & Morgan, B. A. beta-catenin signaling can initiate feather bud development. Development 126, 3509-3521 (1999). 7 Bobacz, K. et al. Expression of bone morphogenetic protein 6 in healthy and osteoarthritic human articular chondrocytes and stimulation of matrix synthesis in vitro. Arthritis Rheum 48, 2501-2508, doi:10.1002/art.11248 (2003). 8 Bandyopadhyay, A. et al. Genetic Analysis of the Roles of BMP2, BMP4, and BMP7 in Limb Patterning and Skeletogenesis. PLOS Genetics 2, e216, doi:10.1371/journal.pgen.0020216 (2006). 9 Tsuji, K. et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38, 1424-1429, doi:10.1038/ng1916 (2006). 10 Botchkarev, V. A. & Kishimoto, J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc 8, 46-55, doi:10.1046/j.1523-1747.2003.12171.x (2003). 11 Hogan, B. L. Bone morphogenetic proteins in development. Current opinion in genetics & development 6, 432-438 (1996). 12 Yu, M., Wu, P., Widelitz, R. B. & Chuong, C.-M. The morphogenesis of feathers. Nature 420, 308, doi:10.1038/nature01196 https://www.nature.com/articles/nature01196#supplementary-information (2002). 13 Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781-810, doi:10.1146/annurev.cellbio.20.010403.113126 (2004). 14 Doerks, T., Copley, R. R., Schultz, J., Ponting, C. P. & Bork, P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 12, 47-56, doi:10.1101/ (2002). 15 Brunt, L. & Scholpp, S. The function of endocytosis in Wnt signaling. Cell Mol Life Sci 75, 785-795, doi:10.1007/s00018-017-2654-2 (2018). 16 Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin. Cell 105, 533-545, doi:https://doi.org/10.1016/S0092-8674(01)00336-1 (2001). 17 Millar, S. E. Molecular mechanisms regulating hair follicle development. J Invest Dermatol 118, 216-225, doi:10.1046/j.0022-202x.2001.01670.x (2002). 18 Ouji, Y. et al. Wnt-10b, uniquely among Wnts, promotes epithelial differentiation and shaft growth. Biochem Biophys Res Commun 367, 299-304, doi:10.1016/j.bbrc.2007.12.091 (2008). 19 Qiu, W. et al. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration. Histochem Cell Biol 147, 749-758, doi:10.1007/s00418-017-1540-1 (2017). 20 Telerman, S. B. et al. Dermal Blimp1 Acts Downstream of Epidermal TGFbeta and Wnt/beta-Catenin to Regulate Hair Follicle Formation and Growth. J Invest Dermatol 137, 2270-2281, doi:10.1016/j.jid.2017.06.015 (2017). 21 Gong, H. et al. Skin transcriptome reveals the dynamic changes in the Wnt pathway during integument morphogenesis of chick embryos. PLOS ONE 13, e0190933, doi:10.1371/journal.pone.0190933 (2018). 22 Liu, C. et al. De Novo Transcriptome Sequencing Analysis of Goose (Anser anser) Embryonic Skin and the Identification of Genes Related to Feather Follicle Morphogenesis at Three Stages of Development. Int J Mol Sci 19, doi:10.3390/ijms19103170 (2018). 23 Yue, Z., Jiang, T.-X., Widelitz, R. B. & Chuong, C.-M. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia. Proceedings of the National Academy of Sciences of the United States of America 103, 951-955 (2006). 24 Lin, J. & Yue, Z. Coupling of apical-basal polarity and planar cell polarity to interpret the Wnt signaling gradient in feather development. Development 145, doi:10.1242/dev.162792 (2018). 25 Chu, Q. et al. Dkk2/Frzb in the dermal papillae regulates feather regeneration. Developmental Biology 387, 167-178, doi:https://doi.org/10.1016/j.ydbio.2014.01.010 (2014). 26 Tickle, C. & Towers, M. Sonic Hedgehog Signaling in Limb Development. Frontiers in cell and developmental biology 5, 14, doi:10.3389/fcell.2017.00014 (2017). 27 Stopper, G. F., Richards-Hrdlicka, K. L. & Wagner, G. P. Hedgehog inhibition causes complete loss of limb outgrowth and transformation of digit identity in Xenopus tropicalis. Journal of experimental zoology. Part B, Molecular and developmental evolution 326, 110-124, doi:10.1002/jez.b.22669 (2016). 28 Tickle, C. How the embryo makes a limb: determination, polarity and identity. Journal of anatomy 227, 418-430, doi:10.1111/joa.12361 (2015). 29 Xavier, G. M. et al. Hedgehog receptor function during craniofacial development. Dev Biol 415, 198-215, doi:10.1016/j.ydbio.2016.02.009 (2016). 30 Finco, I., Lerario, A. M. & Hammer, G. D. Sonic Hedgehog and WNT Signaling Promote Adrenal Gland Regeneration in Male Mice. Endocrinology 159, 579-596, doi:10.1210/en.2017-03061 (2018). 31 Ma, X. et al. Msi2 Maintains Quiescent State of Hair Follicle Stem Cells by Directly Repressing the Hh Signaling Pathway. J Invest Dermatol 137, 1015-1024, doi:10.1016/j.jid.2017.01.012 (2017). 32 Adolphe, C. et al. Patched 1 and Patched 2 Redundancy Has a Key Role in Regulating Epidermal Differentiation. Journal of Investigative Dermatology 134, 1981-1990, doi:https://doi.org/10.1038/jid.2014.63 (2014). 33 Atwood, S. X., Whitson, R. J. & Oro, A. E. Advanced treatment for basal cell carcinomas. Cold Spring Harbor perspectives in medicine 4, a013581-a013581, doi:10.1101/cshperspect.a013581 (2014). 34 Drummond, M. L. & Atwood, S. X. sm“FISH”ing for Hedgehog. Journal of Investigative Dermatology 137, 13-15, doi:https://doi.org/10.1016/j.jid.2016.07.021 (2017). 35 Adolphe, C., Junker, J. P., Lyubimova, A., van Oudenaarden, A. & Wainwright, B. Patched Receptors Sense, Interpret, and Establish an Epidermal Hedgehog Signaling Gradient. Journal of Investigative Dermatology 137, 179-186, doi:https://doi.org/10.1016/j.jid.2016.06.632 (2017). 36 McKinnell, I. W., Turmaine, M. & Patel, K. Sonic Hedgehog functions by localizing the region of proliferation in early developing feather buds. Dev Biol 272, 76-88, doi:10.1016/j.ydbio.2004.04.019 (2004). 37 Ting-Berreth, S. A. & Chuong, C. M. Sonic Hedgehog in feather morphogenesis: induction of mesenchymal condensation and association with cell death. Developmental dynamics : an official publication of the American Association of Anatomists 207, 157-170, doi:10.1002/(sici)1097-0177(199610)207:2<157::aid-aja4>3.0.co;2-g (1996). 38 San-Jose, L. M. et al. Effect of the MC1R gene on sexual dimorphism in melanin-based colorations. Mol Ecol 24, 2794-2808, doi:10.1111/mec.13193 (2015). 39 Beziers, P., Ducrest, A. L., Simon, C. & Roulin, A. Circulating testosterone and feather-gene expression of receptors and metabolic enzymes in relation to melanin-based colouration in the barn owl. Gen Comp Endocrinol 250, 36-45, doi:10.1016/j.ygcen.2017.04.015 (2017). 40 Larsen, C. T., Holand, A. M., Jensen, H., Steinsland, I. & Roulin, A. On estimation and identifiability issues of sex-linked inheritance with a case study of pigmentation in Swiss barn owl (Tyto alba). Ecology and evolution 4, 1555-1566, doi:10.1002/ece3.1032 (2014). 41 Wilkins, M. R. et al. Phenotypic differentiation is associated with divergent sexual selection among closely related barn swallow populations. J Evol Biol 29, 2410-2421, doi:10.1111/jeb.12965 (2016). 42 Roulin, A., Altwegg, R., Jensen, H., Steinsland, I. & Schaub, M. Sex-dependent selection on an autosomal melanic female ornament promotes the evolution of sex ratio bias. Ecology letters 13, 616-626, doi:10.1111/j.1461-0248.2010.01459.x (2010). 43 Lank, D. B., Farrell, L. L., Burke, T., Piersma, T. & McRae, S. B. A dominant allele controls development into female mimic male and diminutive female ruffs. Biol Lett 9, 20130653, doi:10.1098/rsbl.2013.0653 (2013). 44 Farrell, L. L., Kupper, C., Burke, T. & Lank, D. B. Major breeding plumage color differences of male ruffs (Philomachus pugnax) are not associated with coding sequence variation in the MC1R gene. J Hered 106, 211-215, doi:10.1093/jhered/esu079 (2015). 45 Kondo, M. et al. Flight feather development: its early specialization during embryogenesis. Zoological Lett 4, 2, doi:10.1186/s40851-017-0085-4 (2018). 46 林偉智. 綠頭鴨性捲羽形態之形成. 碩士論文,國立中興大學動物科學系所 (2017). 47 林子喬. 台灣土雞、鴛鴦與孔雀換羽期性腺荷爾蒙變化. 碩士論文,國立中興大學動物科學系所 (2016). 48 Fargallo, J. A., Martinez-Padilla, J., Toledano-Diaz, A., Santiago-Moreno, J. & Davila, J. A. Sex and testosterone effects on growth, immunity and melanin coloration of nestling Eurasian kestrels. J Anim Ecol 76, 201-209, doi:10.1111/j.1365-2656.2006.01193.x (2007). 49 Punnet, R. C. & Bailey, P. G. <0037-0057.pdf>. III. Journ. of Genet. Bd. 11, S. 37–57. (1921). 50 Leshin, M., George, F. W. & Wilson, J. D. Increased estrogen synthesis in the Sebright bantam is due to a mutation that causes increased aromatase activity. Transactions of the Association of American Physicians 94, 97-105 (1981). 51 Brandt, A. Zeit. f. Wiss. Zool. Vol. 48 (1889). 52 Tichomiroff, A. Proc. Nat. Hist. Soc. Moscow. Vol. 52 (1887). 53 Crew, F. A. E. Studies in Intersexuality.--II. Sex-Reversal in the Fowl. 95, 256-278 (1923). 54 Arnold, A. P. Sex chromosomes and brain gender. Nat Rev Neurosci 5, 701-708, doi:10.1038/nrn1494 (2004). 55 Zhao, D. et al. Somatic sex identity is cell autonomous in the chicken. Nature 464, 237-242, doi:10.1038/nature08852 (2010). 56 Lakshman, K. M. et al. The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men. J Clin Endocrinol Metab 95, 3955-3964, doi:10.1210/jc.2010-0102 (2010). 57 Tan, R. S., Cook, K. R. & Reilly, W. G. High estrogen in men after injectable testosterone therapy: the low T experience. Am J Mens Health 9, 229-234, doi:10.1177/1557988314539000 (2015). 58 Schwahn, D. J., Timchenko, N. A., Shibahara, S. & Medrano, E. E. Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes. Pigment Cell Res 18, 203-213, doi:10.1111/j.1600-0749.2005.00229.x (2005). 59 Kim, Y. J., Han, J. H., Kang, H. Y., Lee, E. S. & Kim, Y. C. Androgen receptor overexpression in Becker nevus: histopathologic and immunohistochemical analysis. J Cutan Pathol 35, 1121-1126, doi:10.1111/j.1600-0560.2008.00988.x (2008). 60 Hirobe, T., Kiuchi, M., Wakamatsu, K. & Ito, S. Estrogen increases hair pigmentation in female recessive yellow mice. Zoolog Sci 27, 470-476, doi:10.2108/zsj.27.470 (2010). 61 Haase, E., Ito, S. & Wakamatsu, K. Influences of Sex, Castration, and Androgens on the Eumelanin and Pheomelanin Contents of Different Feathers in Wild Mallards. Pigment Cell Research 8, 164-170, doi:10.1111/j.1600-0749.1995.tb00658.x (1995). 62 Lindsay, W. R., Barron, D. G., Webster, M. S. & Schwabl, H. Testosterone activates sexual dimorphism including male-typical carotenoid but not melanin plumage pigmentation in a female bird. J Exp Biol 219, 3091-3099, doi:10.1242/jeb.135384 (2016). 63 Pike, T. W. & Petrie, M. Offspring sex ratio is related to paternal train elaboration and yolk corticosterone in peafowl. Biol Lett 1, 204-207, doi:10.1098/rsbl.2005.0295 (2005).
摘要: 
羽毛的樣式是自然界中最醒目的動物特徵之一,很多鳥類的雄性個體和雌性個體具有體型、羽毛等外觀特徵上的差異,這樣的現象被稱為性別兩形性(sexual dimorphism)。家雞(Gallus gallus domesticus)的羽毛在公母個體間具有非常明顯的差異,特別是尾羽(tail)、背頸(hackle)及鞍部(saddle)。雌性羽毛在尖端顯示出較圓、短的特徵,而雄性則為尖而細長。雖然現在有許多不同的假說關於演化及性別兩形性的形成,但仍缺少完整的證據及關於其分子機制的研究。在過去的研究中有發現許多家雞羽毛發生性轉換(sexual reversal)的案例,如芳香酶(Aromatase)導致具有henny-feather的雄性雞隻與老化母雞身上的羽毛性轉換,這些都提供了研究雞隻羽毛兩型性的關鍵線索。

在本試驗中,我們在兩性家雞體內各創造不同睪固酮(Testosterone, T)及雌二醇(Estradiol , E2)水平的4個環境。在執行荷爾蒙的操作後,我們逐週採集其毛囊(Feather follicle)生長初期的血清,再使用酵素結合免疫吸附分析法(ELISA)進行檢測。待羽毛囊生長至14天時採樣,並於羽毛完全成熟後確認樣式與生長時荷爾蒙的關係。最後我們也對於不同T/E2水平的組別進行生長初期毛囊的轉錄組(Transcriptome)的分析,並使用即時聚合酶鏈式反應(Real-time PCR)確認真實的表現差異。

結果顯示大部分的操作組都有在毛囊生長初期產生賀爾蒙的變化,在注射E2的公雞中,本來的雄性羽毛都轉換為雌性;而在閹割組中,公母個體都長出了雄性樣式的羽毛,而性轉後的羽毛在顏色、尺寸上與野生形的公、母羽毛都不盡相同。另外而母雞的睪固酮處理組中並未發現羽毛有偏向雄性個體的現象。我們同時也發現T/E2的比值似乎與羽毛樣式具有一定的關聯,在T/E2比值高於一個尚未明確的閾值後,公母個體皆發育出雄性羽毛:反之則發育出雌性羽毛。在控制組雌雄個體毛囊的轉錄組分析中,我們發現有約1500個基因具有表現量上的差異,其中有42個和羽毛的發育及色素形成調控有關。然而經由後續的Real-time PCR確認其中的12個基因後,我們並未發現這些基因在雌、雄性狀毛中有表現上的差異。但在結果中我們也發現某些基因在特定的處理組中有著較高的表現量,這樣的結果可能前述中性轉後的羽毛仍與野生形樣式存在差異有關。本試驗的結論認為。綜合上述結果,我們認為家雞羽毛形態在兩型性中的原型是雄性樣式,而是E2的作用導致羽毛的兩型性發育。另外T / E2比值可能參與決定家雞性別兩形性的樣式。

Birds’ plumage is one of most recognizable characteristics in nature. In many bird species, their plumage patterns are distinct from males to females, known as sexual dimorphism. Chicken(Gallus gallus domesticus) is one kind of feather sexual dimorphic birds. There are shown very different trait on its feather between both sexes, especially on the tail, hackle and saddle. Different hypotheses have been proposed for the evolution and formation of sexual dimorphism; however, the molecular mechanism underlying sexual dimorphic plumage has not been proven. Previous studies had reported some feather sexual reversal case on chicken (e.g. hen-feathered chicken and old-hen feather sexual reversal). It provided some key clues for this question.In this study, we created 4 situations of testosterone(T) and estradiol(E) level in chicken. We collected birds’ serum every week during initial growth phase of feather follicles, and ELISA kits were applied to analyze the level of T, E2 level. And Established association between hormone level and mature plumage pattern. Finally we analyses transcriptome of growing feather follicle and use Real-time PCR to confirm real expressions difference in all group.

In our results reveal most of manipulation group change hormone level in initial growth phase. And all estradiol injection roosters, their male feathers were converted to female-like morphology; furthermore, the feathers adopted the male-like morphology in both male and female castration group, although the color and others characteristics of sexual reversal feathers are not totally same to both wild-type sexes pattern. Increase the T level in female chicken didn’t make the trait change on their plumage. We also found there is some relation between T/E2 Ratio and feather pattern. When T/E2 is higher than some unclarified threshold, the feathers adopted the male-like morphology in both male and female, and shown female-like in contrast. In analysis of transcriptome, we found 42 gene has expressions difference between wild-type male and female, and selected 12 of them do to real-time PCR. Although we didn’t find significant difference between male-like and female-like feather, but we find some genes have high expression in initial growth follicle of individual group. In conclusion, the results in this study demonstrated that the proto-type of feather morphology is of male-like and the actions of estrogen lead to sexual dimorphic development of bird feather. And T/E2 Ratio may be involved in the pattern determine in chicken sexual dimorphism.
URI: http://hdl.handle.net/11455/99404
Rights: 同意授權瀏覽/列印電子全文服務,2022-02-13起公開。
Appears in Collections:生命科學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.