Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99405
標題: 東方果實蠅抗菌蛋白基因之選殖與表現
Cloning an antimicrobial peptide gene from the oriental fly, Bactrocera dorsalis (Hendel) and expressing in E. coli
作者: 李彥儒
Yen-Ju Lee
關鍵字: 東方果實蠅;抗菌胜肽;sarcocystatin-like protein;Bactrocera dorsalis;antimicrobial peptides (AMPs);sarcocystatin-like protein
引用: Abrahamson M, Alvarez-Fernandez M, Nathanson CM. 2003. Cystatins. Biochem Soc Symp 70: 179-199. Bahar AA, Ren D. 2013. Antimicrobial peptides. Pharmaceuticals 6: 1543-1575. Benincasa M, Scocchi M, Podda E, Skerlavaj B, Dolzani L, Gennaro R. 2004. Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25: 2055-2061. Björn C. 2016. Antimicrobial peptides in the treatment of infectious and inflammatory conditions- Preclinical studies of mechanism of action, efficacy, and safety. Doctoral thesis, Department of Molecular and Clinical Medicine, Institute of Medicine at Sahlgrenska Academy University of Gothenburg. 97 pp. Chiu HT. 1978. Studies on the improvement of mass rearing for oriental fruit flies. Plant Protect Bull 20: 87-92. (In Chinese) Christensen B, Fink J, Merrifield RB, Mauzerall D. 1988. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 85: 5072-5076. Dang XL, Tian JH, Yang WY, Wang WX, Ishibashi J, Asaoka A, Yi HY, Li YF, Cao Y, Yamakawa M, Wen SY. 2009. Bactrocerin-1: a novel inducible antimicrobial peptide from pupae of oriental fruit fly Bactrocera dorsalis Hendel. Arch Insect Biochem Physiol 71: 117-129. Dathe M, Wieprecht T. 1999. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462: 71-87. Dias RO, Franco OL. 2015. Cysteine-stabilized αβ defensins: From a common fold to antibacterial activity. Peptides 72: 64-72. Dürr UH, Sudheendra US, Ramamoorthy A. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758: 1408-1425. Ehrenstein G, Lecar H. 1977. Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10: 1-34. Epand RM. 2006. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res 45: 279-294. Epand RM. 2016. Host Defense Peptides and Their Potential as Therapeutic Agents. Springer International Publishing. pp 95-100. Epand RM, Vogel HJ. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462: 11-28. Gaspar D, Veiga AS, Castanho MA. 2013. From antimicrobial to anticancer peptides. A review. Front Microbiol 4: 1-16. Gifford JL, Hunter HN, Vogel HJ. 2005. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62: 2588-2598. Gopal GJ, Kumar A. 2013. Strategies for the production of recombinant protein in Escherichia coli. Protein J 32: 419-425. Hara T, Mitani Y, Tanaka K, Uematsu N, Takakura A, Tachi T, Kodama H, Kondo M, Mori H, Otaka A, Nobutaka F, Matsuzaki K. 2001. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study. Biochemistry 40: 12395-12399. Hou XS, Hu ZL, Chen GP, Li Y, Wang BQ, Li ZE. 2009. Antimicrobial peptides: Antibacterial mechanism and therapeutic use. Microbiology 36: 97-105. (In Chinese) Hultmark D, Engström A, Bennich H, Kapur R, Boman HG. 1982. Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem 127: 207-217. Imamura T, Yamamoto N, Tamura A, Murabayashi S, Hashimoto S, Shimada H, Taguchi S. 2008. NMR based structure-activity relationship analysis of an antimicrobial peptide, thanatin, engineered by site-specific chemical modification: Activity improvement and spectrum alteration. Biochem Biophys Res Commun 369: 609-615. Janowski R, Kozak M, Jankowska E, Grzonka Z, Grubb A, Abrahamson M, Jaskolski M. 2001. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 8: 316-320. Leuschner C, Hansel W. 2004. Membrane disrupting lytic peptides for cancer treatments. Curr Pharm Des 10: 2299-2310. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. 2012. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37: 207-215. Liu LP, Xi GS, Wang F, Liu XM. 2013. Research progress of phenoloxidase in insects. Chinese Bull Life Sci 25: 383-387. (In Chinese) Liu Z, Brady A, Young A, Rasimick B, Chen K, Zhou C, Kallenbach NR. 2007. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother 51: 597-603. López-Meza JE, Ochoa-Zarzosa A, Aguilar JA, Loeza-Lara PD. 2011. Antimicrobial peptides: diversity and perspectives for their biomedical application. pp 275-304. In: Olsztynska S and Komorowska M (eds). Biomedical Engineering: Trends, Research and Technologies. Croatia: Intech. Low KO, Mahadi NM, Illias RM. 2013. Optimisation of signal peptide for recombinant. Appl Microbiol Biotechnol 97: 3811-3826. Magister S, Kos J. 2013. Cystatins in immune system. J Cancer 4: 45-56. Marchini D, Marri L, Rosetto M, Manetti AG, Dallai R. 1997. Presence of antibacterial peptides on the laid egg chorion of the medfly Ceratitis capitata. Biochem Biophys Res Commun 240: 657-663. Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M. 2014. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 21: 1639-1647. Matsuzaki K, Murase O, Fujii N, Miyajima K. 1996. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35: 11361-11368. Mavri J, Vogel HJ. 1996. Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study. Proteins 24: 495-501. Miao JY, Ke C, Guo HX, Liu G, Gao XY, Cao Y. 2014. Extraction, isolation and antibacterial mechanism of antibacterial peptides. Modern Food Sci Technol 30: 233-240. (In Chinese) Mihajlovic M, Lazaridis T. 2010. Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta 1798: 1485-1493. Mishra B, Wang G. 2012. The importance of amino acid composition in natural AMPs: An evolutional, structural, and functional perspective. Front Immunol 3: 221-225. Naito A, Nagao T, Norisada K, Javkhlantugs N, Mishima D, Kawamura I, Ueda K. 2018. Dynamic membrane bound structures of melittin and alamethicin as revealed by solid-State NMR and MD simulation. Biophys J 114: 453a. Nguyen LT, Haney EF, Vogel HJ. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29: 464-472. Nikaido H. 2009. Multidrug resistance in bacteria. Annu Rev Biochem 78: 119-146. Ostroumova OS, Efimova SS, Malev VV. 2015. Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning. Int Rev Cell Mol Biol 315: 245-297. Papagianni M. 2003. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21: 465-499. Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31: 12416-12423. Rahnamaeian M, Cytryńska M, Zdybicka-Barabas A, Dobslaff K, Wiesner J, Twyman RM, Zuchner T, Sadd BM, Regoes RR, Schmid-Hempel P. 2015. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc Biol Sci 282: 20150293. Rivas L, Luque-Ortega JR, Andreu D. 2009. Amphibian antimicrobial peptides and protozoa: lessons from parasites. Biochim Biophys Acta 1788: 1570-1581. Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ. 2003. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol 126: 129-142. Rosales C. 2017. Cellular and molecular mechanisms of insect immunity. In: Shields V.D.C (ed). Insect Physiology and Ecology. InTeach, pp 179-212. Rosetto M, Marchini D, de Filippis T, Ciolfi S, Frati F, Quilici S, Dallai R. 2003. The ceratotoxin gene family in the medfly Ceratitis capitata and the Natal fruit fly Ceratitis rosa (Diptera: Tephritidae). Heredity 90: 382-389. Sansom MS. 1991. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55: 139-235. Sanchez JF, Hoh F, Strub MP, Aumelas A, Dumas C. 2002. Structure of the cathelicidin motif of protegrin-3 precursor: structural insights into the activation mechanism of an antimicrobial protein. Structure 10: 1363-1370. Shamsi TN, Fatima S. 2016. Protease inhibitors as ad-hoc antibiotics. Open Pharm Sci J 3: 131-137. Simons K, Ikonen E. 2000. How cells handle cholesterol. Science 290: 1721-1726. Sood R, Kinnunen PK. 2008. Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37 (W27F) and temporin L. Biochim Biophys Acta 1778: 1460-1466. Staniforth RA, Giannini S, Higgins LD, Conroy MJ, Hounslow AM, Jerala R, Craven CJ, Waltho JP. 2001. Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J 20: 4774-4781. Strand MR. 2008. The insect cellular immune response. Insect Sci 15: 1-14. Strömstedt AA. 2009. Antimicrobial peptide interactions with phospholipid membranes: Effects of peptide and lipid composition on membrane adsorption and disruption. Acta Universitatis Upsaliensis, Uppsala. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu: diva-100966. Swithenbank L, Morgan C. 2017. The role of antimicrobial peptides in lung cancer therapy. J Antimicrob Agents 3: 134-140 Tassanakajon A, Rimphanitchayakit V, Visetnan S, Amparyup P, Somboonwiwat K, Charoensapsri W, Tang S. 2018. Shrimp humoral responses against pathogens: antimicrobial peptides and melanization. Dev Comp Immunol 80: 81-93. Verma P, Tapadia MG. 2012. Immune response and anti-microbial peptides expression in Malpighian tubules of Drosophila melanogaster is under developmental regulation. PLoS One 7: e40714. Wang CK, Hu SH, Martin JL, Sjögren T, Hajdu J, Bohlin L, Claeson P, Göransson U, Rosengren KJ, Tang J, Tan NH, Craik DJ. 2009. Combined X-ray and NMR analysis of the stability of the cyclotide cystine knot fold that underpins its insecticidal activity and potential use as a drug scaffold. J Biol Chem 284: 10672-10683. Wang G. 2010. Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies. CABI; Wallingford, UK. 288 pp. Wang G. 2015. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol Biol 1268: 43-66. Wang G. 2016. Structural analysis of amphibian, insect, and plant host efense peptides inspires the design of novel therapeutic molecules. pp. 229-252. In: Epand R. (ed), Host Defense Peptides and Their Potential as Therapeutic Agents. Springer, Switzerland. Won HS, Jung SJ, Kim HE, Seo MD, Lee BJ. 2004. Systematic peptide engineering and structural characterization to search for the shortest antimicrobial peptide analogue of gaegurin 5. J Biol Chem 279: 14784-14791. Wu M, Maier E, Benz R, Hancock RE. 1999. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38: 7235-7542. Yang WY, Wen SY, Huang YD, Ye MQ, Deng XJ, Han D, Xia QY, Cao Y. 2006. Functional divergence of six isoforms of antifungal peptide Drosomycin in Drosophila melanogaster. Gene 379: 26-32. Yeaman MR, Yount NY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55: 27-55. Yin KL, Wang JR, Sun HB. 2015. Progress of antimicrobial peptides research and application. China Acad J 35: 181-185. (In Chinese) Zhang LJ, Gallo RL. 2016. Antimicrobial peptides. Curr Biol 26: R14-9. Zhang ZT, Zhu S.Y. 2009. Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol Biol 18: 549-556. Zhao H, Kinnunen PK. 2002. Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J Biol Chem 277: 25170-25177.
摘要: 
被東方果實蠅 (Bactrocera dorsalis Hendel) 產卵的果肉不易受微生物感染,引發本研究探討蟲卵表面抗生物質的本質與特性的動機。首先利用洋菜膠抑菌環試驗證實蟲卵洗滌液具有抗生物質。藉由聚丙烯醯胺凝膠電泳 (SDS-PAGE) 分析,認為此抗生物質可能是一抗菌胜肽分子,大小約3 kDa。經質譜定序的結果顯示,此抗菌胜肽含28個胺基酸,可能源自於sarcocystatin-like protein的降解。接著,參考sarcocystatin-like protein的基因序列設計引子,經RT-PCR及RACE方法進行完整基因的選殖,最後選殖出一全長489 bp的cDNA序列,命名為Bdscys-A (accession number MG231276)。此基因可轉譯出124個胺基酸,Met1-Ala26為訊息胜肽序列,Leu45至Ser115為cystatin保守區域。Bdscys-A序列具有數個疑似可被胰蛋白酶 (trypsin) 切割的位點,推論可經胰蛋白酶切割切割產生28個胺基酸之α螺旋結構抗菌胜肽。檢測Bdscys-A基因在蟲體的表現區域,結果顯示不論在雌、雄成蟲的頭、胸及腹部皆有表現,而以腹部的表現量較頭、胸部為高;在雌蟲的表現量也明顯的較雄蟲高。在雄蟲,馬氏管 (Malpighian tubule) 有較高的表現,然其表現量並不多;在雌蟲則以生殖副腺 (reproductive accessory gland) 表現量最高。利用大腸桿菌 (Escherichia coli, E. coli) 蛋白質表現系統來大量表現Bdscys-A時,顯示訊息胜肽序列會完全阻礙Bdscys-A在E. coli的表現。刪除訊息胜肽序列的載體pET29a-NSPSA,在IPTG的誘導下,會大量表現Bdscys-A。最後,Bdscys-A蛋白於抗菌試驗顯示抗菌活性並不強,推測可能需經酵素切割後所產生之抗菌胜肽可能具抗菌效果,期望將來可透過胺基酸的取代使抗菌胜肽更穩定,能開發成應用廣泛的抗菌劑。

Fruit would be reduced from microbial infection when oriental fruit fly (Bactrocera dorsalis Hendel) laid eggs inside the fruit, triggering the investigation on the anti-microbial material associated with eggs. Firstly, it was confirmed that the egg washing solution contains antibacterial material according to the positive result of antibacterial ring test; subsequently, the SDS-PAGE analysis showed that it might be an antibacterial peptide (AMP) with a size of about 3 kDa. The mass spectrometry analysis further revealed that the AMP consisted of 28 amino acids, which is possibly derived from digestion of sarcocystatin-like protein. After that, based on the sequence of sarcocystatin-like protein gene, and followed a series of RT-PCR and RACE reactions; and finally, a full-length 489-bp cDNA sequence was completed and named Bdscys-A with an accession number MG231276 in GenBank. The Bdscys-A can transduce a protein consists of 124 amino acids, containing a signal peptide from Met1 to Ala26 and conserved domain of cystatin from Leu45 to Ser115. Furthermore, there are two suspected trypsin digestion sites located in Bdscys-A; therefore, it is speculated that the 28 amino acid comprised an antibacterial peptide with α helix structure was derived from Bdscys-A by trypsin digestion. The gene expression in adult fly showed that Bdscys-A is expressed in all of head, thorax and abdomen regions of both males and females, while the expression of the abdomen was higher than that of the head and thorax. Moreover, females expressed higher than males. In males, the Malpighian tubules showed the highest Bdscys-A, though its expression was very low; in females, the reproductive accessory glands were the highest in Bdscys-A expression compared to other organs. When Bdscys-A was expressed using E. coli protein expression system, the cDNA with the complete open reading frame (pET29a-NSPSA) could not be induced by IPTG to express recombinant protein; conversely, the signal peptide-deleted cDNA (pET29a-NSPSA) could successfully express a considerable amount of Bdscys-A protein. These results show that the signal peptide sequence of Bdscys-A completely blocked the protein synthesis in E. coli. Finally, the antimicrobial test results showed that the antimicrobial activity of Bdscys-A was not significant, and it is speculated that the antimicrobial effect of Bdscys-A could be enhanced after enzymatic digestion. It is expected, in the future, that the antimicrobial peptide would be stabilized through the substitution of amino acids, and could be developed into a widely used antimicrobial agent.
URI: http://hdl.handle.net/11455/99405
Rights: 同意授權瀏覽/列印電子全文服務,2019-02-14起公開。
Appears in Collections:生命科學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-108-7103052092-1.pdf1.84 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.