Please use this identifier to cite or link to this item:
標題: 第一原理計算探討應力誘發ZnGa2O4/Al2O3異質界面與薄膜結構特性研究
Ab-initio Study of Strain-Induced ZnGa2O4/Al2O3 Heterojunctions and Film Structures
作者: 莊子廣
Tzu-Kuang Juang
關鍵字: 第一原理計算;氧化鋅鎵;鍵焓;氧空缺;first-principles calculation;ZnGa2O4;bond enthalpy;oxygen vacancy
引用: 參考文獻 [1] Takahisa Oshima, Naoyuki Ueda, Kazushige Ueda, and Hiroshi Kawazoe, “New ultraviolettransport electroconductive oxide, ZnGa2O4 spinel, ”Applied Physics Letters., Vol. 64, pp. 1077–1079 (1994). DOI: 10.1063/1.110937 [2] Zheng Yan, Humihiko Takei, and Hiroshi Kawazoe, ”Electrical Conductivity in Transparent ZnGa2O4: Reduction and Surface‐Layer Structure Transformation” Journal of the American Ceramic Society, Vol. 81, pp. 180–186 (1998). DOI: 10.1111/j.1151-2916.1998.tb02311.x [3] J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi, and H. L. Park, “Color variation of ZnGa2O4 phosphor by reduction-oxidation processes, ” Applied Physics Letters, Vol. 82, pp. 2029-2031 (2003). DOI:10.1063/1.219141 [4] Shalima Shawuti, Musa Mutlu. Can, Mehmet Ali Gülgün, and Tezer Fırat, “Grain Size Dependent Comparison of ZnO and ZnGa2O4 Semiconductors by Impedance Spectrometry” Electrochimica Acta, Vol 145, pp. 132-138 (2014). DOI:10.1016/j.electacta.2014.08.084 [5] Li-Chung Cheng, Chiung-Yi Huang, and Ray-Hua Horng, “Thickness Effect on Operational Modes of ZnGa2O4 MOSFETs” Journal of the Electron Devices Society, Vol 6, pp. 432 – 437 (2018). DOI: 10.1109/JEDS.2018.2803078 [6] Yue Teng, Le-Xin Song, Wei Liu, Zhe-Yuan Xu, Qing-Shan Wang, and Mao-Mao Ruanb, “Monodispersed hierarchical ZnGa2O4 microflowers for self-powered solar-blind detection” Journal of Materials Chemistry C, Vol 4, pp. 3113 – 3118 (2016). DOI: 10.1039/C6TC00748A [7] Zheng Lou, Ludong Li, and Guozhen Shen, “High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires,” Nano Research, Vol. 8, pp. 2162−2169 (2015). DOI:10.1007/s12274-015-0723-0 [8] Y. J. Li, M. Y. Lu, C. W. Wang, K. M. Li, and L. J. Chen, “ZnGa2O4 nanotubes with sharp cathodoluminescence peak,” Applied Physics Letters, Vol. 88, 143102 (2006). DOI: 10.1063/1.1564632 [9] Kyung Wook Park, Young Hoon Yun, and Churl Choi Sung, “ZnGa2O4 thin films fabricated by Sol-gel spinning coating process,” Journal of Electroceramics, Vol. 17, pp. 263−266 (2006). DOI:10.1007/s10832-006-0455-3 [10] Takayoshi Oshima, Mifuyu Niwa, Akira Mukai, and Tomohito Nagami, Toshihisa Suyama, Akira Ohtomo, “Epitaxial growth of wide-band-gap ZnGa2O4 films by mist chemical vapor deposition,” Journal of Crystal Growth, Vol. 386, pp. 190−193 (2014). DOI: 10.1016/j.jcrysgro.2013.10.012 [11] R. Reshmi, K. M. Krishna, R. Manoj and M. K. Jayaraj, “Pulsed laser deposition of ZnGa2O4 phosphor films,” Surface and Coatings Technology, Vol. 198, pp. 345−349 (2005). DOI: /10.1016/j.surfcoat.2004.10.072 [12] Yi-Siang Shen, Wei-Kai Wang, and Ray-Hua. Horng, “Characterizations of Metal-Oxide-Semiconductor Field-Effect Transistors of ZnGaO Grown on Sapphire Substrate,” Electron Devices Society, Vol. 5, pp. 112−116 (2017). DOI: 0.1109/JEDS.2017.2653419 [13] Ray-Hua Horng, Chiung-Yi Huang, Sin-Liang Ou, Tzu-Kuang Juang, and Po- Liang Liu, “Epitaxial Growth of ZnGa2O4: A New Deep Ultraviolet Semiconductor Candidate,” Crystal Growth & Design, Vol. 17, pp. 6071–6078 (2017). DOI: 10.1021/acs.cgd.7b01159 [14] Wen-Zhi Xiao, Ling-Ling Wang, Liang-Xua, Qing Wan, and B. S. Zou, ”Electronic structure and magnetic interactions in Ni-doped β-Ga2O3 from first-principles calculations”, Scripta Materialia, Vol 61, pp.477-480 (2009). DOI:10.1016/j.scriptamat.2009.05.002 [15] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, pp. 15, (1996). DOI: 10.1016/0927-0256(96)00008-0 [16] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, pp. 16, (1996). DOI: 10.1103/PhysRevB.54.11169 [17] G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, pp. 8245, (1994). DOI: 10.1088/0953-8984/6/40/015 [18] G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, Vol. 59, pp. 1758, (1999). DOI: 10.1103/PhysRevB.59.1758 [19] S. S. Yi, I. W. Kim, J. S. Bae, B. K. Moon, S. B. Kim and J. H. Jeong, “Luminescence characteristics of ZnGa2O4 thin film phosphors grown by pulsed laser deposition”, Materials Letters, Vol. 57, pp. 904−909 (2002). DOI: /10.1016/S0167-577X(02)00893-5 [20] P. L. Liu, A. V. G. Chizmeshya, J. Kouvetakis and I. S. Tsong, “First-principles studies of GaN(0001) heteroepitaxy on ZrB2(0001)”, Physical Review B, Vol. 72 (2005). DOI: 10.1103/PhysRevB.72.245335 [21] [22] S.V. Meschel and O.J. Kleppa. ”Standard enthalpies of formation of some 4d transition metal gallides by high temperature direct synthesis calorimetry”, Journal of Alloys and Compounds, Vol 297, pp. 162-167 (2000). DOI: 10.1016/S0925-8388(99)00599-X [23] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, Vol. 136(3B), pp. B864 (1964). DOI: 10.1103/PhysRev.136.B864 [24] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, Vol. 136, pp. 1133 (1965). DOI: 10.1103/PhysRev.140.A1133 [25] John. P. Perdew and Yue. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33, pp. 8800 (1986). DOI: 10.1103/PhysRevB.33.8800 [26] John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R. Pederson, D. J. Singh and Carlos Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, pp. 6671 (1986). DOI: 10.1103/PhysRevB.46.6671 [27] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865 [28] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Terative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045 (1992). DOI: 10.1103/RevModPhys.64.1045 [29] J.S.Kim, H.L. Park, C. M. Chon, H. S. Moon, and T. W. Kim, “The origin of emission color of reduced and oxidized ZnGa2O4 phosphors“, Solid State Communications, Vol. 129, pp. 163-167 (2004). DOI: 10.1016/j.ssc.2003.09.032 [30] Fabio Orlandi, Francesco Mezzadri, Gianluca Calestani, Francesco Boschi, and Roberto Fornari, ”Thermal expansion coefficients of beta-Ga2O3 single crystals” Applied Physics Express, Vol 8, pp. 111101 (2015), DOI: 10.7567/APEX.8.111101 [31] Marius Grundmann, ”Elastic theory of pseudomorphic monoclinic and rhombohedral heterostructures” Journal of Applied Physics, Vol 124, pp, 185302 (2018), DOI:10.1063/1.5045845 [32] A. K. Kushwaha,” Vibrational, elastic properties and sound velocities of ZnGa2O4 spinel” Computational Materials Science, Vol 85, pp. 259-263 (2014), DOI: 0.1016/.2013.12.057 [33] Lin-lin. Liu, Pei-Jin. Liu, Song-Qi. Hu, and Guo-Qiang. He,,” Ab-Initio Calculations of the N-N Bond Dissociation for the Gas-phase RDX and HMX” Scientific Reports, Vol 7, pp. 40630 (2017), DOI: 10.1038/srep40630
本研究係基於第一原理計算密度泛函理論研究氧化鋅鎵(ZnGa2O4)薄膜中晶體結構由Ga2O3(2̅01)轉變為ZnGa2O4(111)現象以及ZnGa2O4薄膜與藍寶石基底(Al2O3)之界面結構,計算Ga2O3(2̅01)和ZnGa2O4(111)晶格間距(d-spacing)分別為4.68 Å和4.78 Å,而當Ga2O3(2̅01)塊材模型在經過三維拉伸應變後總能呈逐漸增加趨勢,而ZnGa2O4(111)塊材模型在同樣應變範圍下總能趨勢則呈現逐漸下降,顯示出Ga2O3(2̅01)結構隨拉伸應變的影響轉變成ZnGa2O4(111)結構趨勢之可能性增加。而分析ZnGa2O4(111)和Al2O3(001)界面鍵焓中,具有6個O-Al鍵的界面模型為最佳的界面配置,而結構中觀察到的氧空缺結果也與其他研究結果一致。本研究成果可以解釋其他團隊研究結果中ZnGa2O4薄膜晶體結構轉變和界面狀態。

This study was based on the first-principles calculation of density functional theory. This study investigated the the transformation of a crystal structure from Ga2O3(2̅01) to ZnGa2O4(111) in ZnGa2O4 film and the interface structures between ZnGa2O4 films and sapphire substrates. The lattice spacing (d-spacing) of Ga2O3(2̅01) and ZnGa2O4(111) was calculated to be 4.68 Å and 4.78 Å, respectively. The total energy of the Ga2O3(2̅01) block model increased gradually after three-dimensional tensile strain, and the total energy of the ZnGa2O4(111) block model declined gradually in the same tensile area. This result demonstrated that the probabbility of the Ga2O3(2̅01) structure transforming into a ZnGa2O4(111) structure increased because of tensile strain. In the analysis of ZnGa2O4(111) and Al2O3(001) interface bond enthalpy, the interface model with six O-Al bonds exhibited the best interface configuration, and the model had an oxygen vacancy; these results accorded with the findings of other research. Our research results can explain the crystal structure transition and interface state of ZnGa2O4 thin films in the findings of other research teams.
Rights: 不同意授權瀏覽/列印電子全文服務
Appears in Collections:精密工程研究所

Files in This Item:
File SizeFormat Existing users please Login
nchu-108-7105067070-1.pdf4.62 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.