Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99531
標題: 以離子銅作為印刷電路板金屬化觸媒之研究
The Study of Copper Ion as a Catalyst for Printed Circuit Board Metallization
作者: 張弘明
Hung-Ming Chang
關鍵字: 印刷電路板;觸媒;螯合物;無電電鍍銅;電鍍;Printed Circuit Board (PCB);Catalyst;Chelation;Electroless Copper Deposition;Electroplating
引用: [1] 林定皓、陳正雄,”印刷電路板概論”,全華科技圖書,民國97年。 [2] 林定皓、藍國興,”製程細說-孔壁金屬化”,全華科技圖書,民國101年。 [3] 林振華、林振富,”高密度軟性電路板入門”,全華科技圖書,民國89年。 [4] S.Siau, A. Vervaet, E. Schact and A. V. Calster, “Influence of Chemical Pretreatment of Epoxy Polymers on the Adhesion Strength of Electrochemically Deposited Cu for Use in Electronic Interconnections”, J. Electrochem. Soc. 2004, 151(2), 133. [5] S. Siau, A. Vervaet, E. Schact, S. Degrande, K. Callewaert and A. V. Calster, “Chemical Modification of Building Epoxy Surfaces for Altering the Adhesion of Electrochemically Deposited Copper”, J. Electrochem. Soc. 2005, 152(9), 136. [6] S. Siau, A. Vervaet, E. Schact, U. Demeter and A. V. Calster, “Epoxy Polymer Surface Modification Through Wet-Chemical Organic Surface Synthesis for Adhesion Improvement in Microelectronics”, Thin Solid Films, 2006, 495, 348. [7] M. J. Desilva and Y. S. Diamand, “A Novel Seed Layer Scheme to Protect Catalytic Surface for Electroless Deposition”, J. Electrochem. Soc. 1996, 143, 3512. [8] H.-H. Hsu, C.-C. Hsieh, M.-H. Chen, S.-J. Lin, and J.-W. Yeh, 'Displacement activation of tantalum diffusion barrier layer for electroless copper deposition,' Journal of The Electrochemical Society, vol. 148, no. 9, pp. C590-C598, 2001. [9] B. Baylis, A. Busuttil, N. Hedgecock, and M. Schlesinger, 'Tin (IV) chloride solution as a sensitizer in photoselective metal deposition,' Journal of the Electrochemical Society, vol. 123, no. 3, pp. 348-351, 1976. [10] W . C. Bigelow, D. L. Pickett and W. A. Zisman, “Oleophobic Monolayers:I. Films Adsorbed from Solution in Non-Polar Liquids”, J. Coll. Sci. 1946, 1, 513. [11] A . Ulman, “Formation and Structure of Self-Assemble Monolayers”, Chem. Rev. 1996, 96, 1533. [12] R. G. Nuzzo and D. L. Allara, “Adsorption of Bifunctional Organic Disulfides on Gold Surfaces”, J. Am. Chem. Soc. 1983, 105, 4481. [13] 黃志瑋,“介電層表面修飾對有機蒸鍍薄膜形貌與其場效電晶體性能影響研究”,國立中央大學化學系碩士論文,民國97年。 [14] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, 'Self-assembled monolayers of thiolates on metals as a form of nanotechnology,' Chemical reviews, vol. 105, no. 4, pp. 1103-1170, 2005. [15] E . Ouellet, C. W. T. Yang, T. Lin, L. L. Yang and E. T. Lagally, “Novel Carboxyl-Amine Bonding Methods for Poly(dimethylsiloxane)-Based Devices”, Langmuir 2010, 26, 11609. [16] 鍾怡君,“奈米化粒子穩定化技術以及其在印刷電路板之應用”,國立中興大學化工系碩士論文,民國103年。 [17] 柯賢文,“表面與薄膜處理技術”,全華科技圖書,臺北市,2005年。 [18] V. M. Dubin, Y. Shacham‐Diamand, B. Zhao, P. Vasudev, and C. H. Ting, 'Selective and blanket electroless copper deposition for ultralarge scale integration,' Journal of The Electrochemical Society, vol. 144, no. 3, pp. 898-908, 1997. [19] 逢板哲爾,“化學反應製造金屬薄膜”表面處理工業雜誌,第三期,民國85年。 [20] 張良中,“非導體表面之金屬化”,工業材料,第112期,民國85年。 [21] 莊萬發,“無電解鍍金-化學鍍金技術”復漢出版社,民國85年。 [22] M. Paunovic, 'Electrochemical aspects of electroless deposition of metals,' Plating, vol. 55, no. 11, p. 1161, 1968. [23] F. M. Donahue, K. Wong, and R. Bhalla, 'Kinetics of Electroless Copper Plating IV. Empirical Rate Law for Baths,' Journal of the Electrochemical Society, vol. 127, no. 11, pp. 2340-2342, 1980. [24] R. Goldstein, P. E. Kukanskis, and J. J. Grunwald, 'Method and composition for continuous electroless copper deposition using a hypophosphite reducing agent in the presence of cobalt or nickel ions,' ed: Google Patents, 1981. [25] D. R. Ferrier, 'Electroless copper deposition solutions with hypophosphite reducing agent,' ed: Google Patents, 1982. [26] A. Hung, 'Electroless copper deposition with hypophosphite as reducing agent,' Plating and surface finishing, vol. 75, no. 1, pp. 62-65, 1988. [27] Y. Shacham-Diamand and S. Lopatin, 'Integrated electroless metallization for ULSI,' Electrochimica Acta, vol. 44, no. 21, pp. 3639-3649, 1999. [28] N. Petrov, Y. Sverdlov, and Y. Shacham-Diamand, 'Electrochemical study of the electroless deposition of Co (P) and Co (W, P) alloys,' Journal of the Electrochemical Society, vol. 149, no. 4, pp. C187-C194, 2002. [29] J. Van Den Meerakker, 'On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces,' Journal of Applied Electrochemistry, vol. 11, no. 3, pp. 387-393, 1981. [30] J. Van Den Meerakker, 'On the mechanism of electroless plating. II. One mechanism for different reductants,' Journal of Applied Electrochemistry, vol. 11, no. 3, pp. 395-400, 1981. [31] H. Honma and T. Kobayashi, 'Electroless copper deposition process using glyoxylic acid as a reducing agent,' Journal of the Electrochemical Society, vol. 141, no. 3, pp. 730-733, 1994. [32] Y.-M. Lin and S.-C. Yen, 'Effects of additives and chelating agents on electroless copper plating,' Applied surface science, vol. 178, no. 1, pp. 116-126, 2001. [33] M. Sone, K. Kobayakawa, M. Saitou, and Y. Sato, 'Electroless copper plating using Fe II as a reducing agent,' Electrochimica Acta, vol. 49, no. 2, pp. 233-238, 2004. [34] F. Inoue et al., 'Electroless Copper Bath Stability Monitoring with UV-VIS Spectroscopy, pH, and Mixed Potential Measurements,' Journal of The Electrochemical Society, vol. 159, no. 7, pp. D437-D441, 2012. [35] R. L. Jackson, 'Pd+ 2/poly (acrylic acid) thin films as catalysts for electroless copper deposition: Mechanism of catalyst formation,' Journal of The Electrochemical Society, vol. 137, no. 1, pp. 95-101, 1990. [36] H. Kind, M. Geissler, H. Schmid, B. Michel, K. Kern, and E. Delamarche, 'Patterned electroless deposition of copper by microcontact printing palladium (II) complexes on titanium-covered surfaces,' Langmuir, vol. 16, no. 16, pp. 6367-6373, 2000. [37] M. Seita, H. Nawafune, T. Nishioka, S. Mizumoto, and T. Kanai, 'Photochemical formation of palladium patterns on surface-modified polyimide resin,' Journal of applied electrochemistry, vol. 32, no. 3, pp. 349-352, 2002. [38] S. Busato, A. Belloli, and P. Ermanni, 'Inkjet printing of palladium catalyst patterns on polyimide film for electroless copper plating,' Sensors and Actuators B: Chemical, vol. 123, no. 2, pp. 840-846, 2007. [39] M. Kohtoku, H. Honma, and O. Takai, 'Electroless Plating Catalyst Performance of a Cationic Moiety Bearing Palladium Complex,' Journal of The Electrochemical Society, vol. 161, no. 14, pp. D806-D812, 2014. [40] Y. Lu, L. Xue, and F. Li, 'Adhesion enhancement between electroless nickel and polyester fabric by a palladium-free process,' Applied Surface Science, vol. 257, no. 7, pp. 3135-3139, 2011. [41] U. K. Fatema and Y. Gotoh, 'Iodine-aided palladium-free catalyzation process for durable electroless nickel plating on Kevlar® fiber,' Surface and Coatings Technology, vol. 206, no. 16, pp. 3472-3478, 2012. [42] T. Tamai, M. Watanabe, and K. Matsukawa, 'In‐situ formation of metal nanoparticle/acrylic polymer hybrid and its application to miniemulsion polymerization,' Journal of Applied Polymer Science, vol. 132, no. 43, 2015. [43] M. Charbonnier, M. Romand, and Y. Goepfert, 'Ni direct electroless metallization of polymers by a new palladium-free process,' Surface and Coatings Technology, vol. 200, no. 16, pp. 5028-5036, 2006. [44] M. Charbonnier, M. Romand, Y. Goepfert, D. Leonard, and M. Bouadi, 'Copper metallization of polymers by a palladium-free electroless process,' Surface and Coatings Technology, vol. 200, no. 18, pp. 5478-5486, 2006. [45] Z. Shu and X. Wang, 'Environment-friendly Pd free surface activation technics for ABS surface,' Applied Surface Science, vol. 258, no. 14, pp. 5328-5331, 2012. [46] N. Nobari, M. Behboudnia, and R. Maleki, 'Palladium-free electroless deposition of pure copper film on glass substrate using hydrazine as reducing agent,' Applied Surface Science, vol. 385, pp. 9-17, 2016. [47] L. Hou, Y. Lu, and H. Zhao, 'Preparation of selective conductive copper patterns by pen-on-paper writing combined with electroless plating,' Journal of Materials Science: Materials in Electronics, vol. 27, no. 7, pp. 7318-7326, 2016. [48] W. Xu, M. Zhuang, and Z. Cheng, 'Environmentally Friendly Copper Metallization of ABS by Cu-Catalysed Electroless Process,' Rare Metal Materials and Engineering, vol. 45, no. 7, pp. 1709-1713, 2016. [49] 吳紹起,“配位化學”,淡江大學出版部,臺北市,1983年。 [50] 方景禮,“電鍍配合物”,化學工業出版,北京,2007年。 [51] 柯清水,“無機化學”,水牛出版,臺北市,1997年。 [52] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, 'Damascene copper electroplating for chip interconnections,' IBM Journal of Research and Development, vol. 42, no. 5, pp. 567-574, 1998. [53] P. Dixit and J. Miao, 'Aspect-ratio-dependent copper electrodeposition technique for very high aspect-ratio through-hole plating,' Journal of the Electrochemical society, vol. 153, no. 6, pp. G552-G559, 2006. [54] N. V. Mandich, “Pulse and Pulse-Reverse electroplating,” Metal Finishing, vol. 98, pp. 374–380, 2000. [55] T. R. Rosebrugh and W. L. Miller, “Mathematical Theory of the Changes of Con-centration at the Electrode brought about by Diffusion and by Chemical Reaction,” The Journal of Physical Chemistry, vol. 14, pp. 816–884, 1910. [56] J. J. Sun, K. Kondo, T. Okamura, S. Oh, M. Tomisaka, H. Yonemura, M. Hosh-ion, and K. Takahashi, “High-Aspect-Ratio Copper Via Filling Used for Three Di-mensional Chip Stacking,” Journal of the Electrochemical Society, vol. 150, pp.G355–G358, 2003. [57] K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, and D. P. Barkey, “High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking,” Journal of the Electrochemical Society, vol. 152, pp. H173–H177, 2000. [58] W. W. Wenas, A. Yamada, M. Konagai, and K. Takahashi, “Textured ZnO Thin Films for Solar Cells Grown by Metalorganic Chemical Vapor Deposition,” Japanese Journal of Applied Physics, vol. 30, pp. L441–L443, 1991. [59] 方景禮,“電鍍添加劑理論與應用”,國防工業出版,北京,2006。 [60] Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction,” Journal of the Electrochemical Society, vol. 142, pp. L87–L89, 1995. [61] W. P. Dow, H. S. Huang, M. Y. Yen, and H. H. Chen, “Roles of Chloride ion in Microvia Filling by Copper Electrodeposition,” Journal of the Electrochemical Society, vol. 152, pp. C67–C76, 2005. [62] W. Shao, G. Pattanaik, and G. Zangari, “Influence of Chloride Anions on the Mech-anism of Copper Electrodeposition from Acidic Sulfate Electrolytes,” Journal of the Electrochemical Society, vol. 154, pp. D201–D207, 2007. [63] G. M. Brown and G. A. Hope, “A SERS study of SO24– / Cl– ion adsorption at a copper electrode in-situ,” Journal of Electroanalytical Chemistry, vol. 405, pp. 211–216, 1996. [64] J. P. Healy, D. Pletcher, and M. Goodenough, “The chemistry of the additives in an acid copper electroplating bath: Part II. The instability 4,5-dithiaoctane-1,8- disulphonic acid in the bath on open circuit,” Journal of Electroanalytical Chem-istry, vol. 338, pp. 167–177, 1992. [65] E. E. Farndon, F. C. Walsh, and S. A. Campbell, “Effect of thiourea, benzotriazole and 4,5-dithiaoctane-1,8-disulphonic acid on the kinetics of copper deposition from dilute acid sulphate solutions,” Journal of Applied Electrochemistry, vol. 25, pp.574–583, 1995. [66] A. Frank and A. J. Bard, “The Decomposition of the Sulfonate Additive Sulfopropyl Sulfonate in Acid Copper Electroplating Chemistries,” Journal of the Electrochemical Society, vol. 150, pp. C244–C250, 2003. [67] W. P. Dow, Y. D. Chiu, and M. Y. Yen, “Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide,” Journal of the Electrochemical Society, vol. 156, pp. D155–D167, 2009. [68] H. L. Tu, P. Y. Yen, H. L. Wu, S. Chen, W. Vogel, S. L. Yau, and W. P. Dow, “In Situ STM of 3-Mercaptopropanesulfonate Adsorbed on Pt(111) Electrode and Its Effect on the Electrodeposition of Copper,” Journal of the Electrochemical Society, vol. 157, pp. D206–D210, 2010. [69] M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption Behavior of Polyoxyen-thyleneglycol on the Copper Surface in an Acid Copper Sulphate Bath,” Denki Kagaku, vol. 52, pp. 218–223, 1984. [70] J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Gly-col I. Quartz Crystal Microbalance Study,” Journal of the Electrochemical Society, vol. 145, pp. 3472–3476, 1998. [71] Z. V. Feng, X. Li, and A. A. Gewirth, “Inhibition Due to the Interaction of Polyethy-lene Glycol, Chloride, and Copper in Plating Baths:  A Surface-Enhanced Raman Study,” The Journal of Physical Chemistry B, vol. 107, pp. 9415–9423, 2003. [72] W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling By Copper Electroplating,” Journal of the Electrochemical Society, vol. 152, pp. C769–C775, 2005. [73] B. G. Xie, J. J. Sun, X. B. Chen, J. H. Chen, T. L. Xiang, and G. N. Chen, “In Situ Monitoring of Additives in Copper Plating Baths by Cyclic Voltammetric Strip-ping with a Microelectrode,” Journal of the Electrochemical Society, vol. 154, pp. D516–D519, 2007. [74] S.-C. Chang, J.-M. Shieh, K.-C. Lin, B.-T. Dai, T.-C. Wang, C.-F. Chen, M.-S. Feng, Y.-H. Li, and C.-P. Lu, “Wetting effect on gap filling submicron damascene by an electrolyte free of levelers,” Journal of Vacuum Science & Technology B, vol. 20, pp. 1311–1316, 2002. [75] G. K. Gomma, “Effect of azole compounds on corrosion of copper in acid medium,” Materials Chemistry and Physics, vol. 56, pp. 27–34, 1998. [76] S. K. Kim, D. Josell, and T. P. Moffat, “Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling,” Journal of the Electrochemical Society, vol. 153, pp. C826–C833, 2006. [77] J. J. Kelly and A. C. West, “Leveling of 200 nm Features by Organic Additives,” Electrochemical and Solid-State Letters, vol. 2, pp. 561–563, 2006. [78] P. Taephaisitphongse, Y. Cao, and A. C. West, “Electrochemical and Fill studies of a Multicomponent Additive Package for Copper Deposition,” Journal of the Elec-trochemical Society, vol. 148, pp. C492–C497, 2001. [79] K. Takagi, H. Honma, and T. Sasabe, “Development of sequential build-up multi-layer printed wiring boards in Japan,” IEEE Electrical Insulation Magazine, vol. 19, pp. 27–56, 2003. [80] V. Sundaram, R. Tummala, F. Liu, P. Kohl, J. Li, S. Bidstrup-Allen, and Y. Fukuoka, “Next-generation microvia and global wiring technologies for SOP,” IEEE Transactions on Advanced Packaging, vol. 27, pp. 315–325, 2004. [81] A. Yu, J. Lau, S. W. Ho, A. Kumar, W. Y. Hnin, W. S. Lee, M. C. Jong, V. Sekhar, V. Kripesh, D. Pinjala, S. Chen, C.-F. Chan, C.-C. Chao, C.-H. Chiu, C.-M. Huang, and C. Chen, “Fabrication of High Aspect Ratio TSV and Assembly With Fine-Pitch Low-Cost Solder Microbump for Si Interposer Technology With High-Density Interconnects,” IEEE Transactions on Components, Packaging and Man-ufacturing Technology, vol. 1, pp. 1336–1344, 2011. [82] J. H. Lau, “Overview and outlook of through-silicon via (TSV) and 3D integra-tions,” Microelectronics International, vol. 28, pp. 8–22, 2011. [83] E. K. Yun and L. T. Romankiw, “Fundamental Studyof Acid Copper Through-Hole Electroplating Process,” Journal of the Electrochemical Society, vol. 136, pp. 756–767, 1989. [84] J.-W. E. Chern and H. Y. Cheh, “Modeling of Plated Through Hole Processes: II. Effect of Leveling Agents on Current Distribution,” Journal of the Electrochemical Society, vol. 143, pp. 3144–3148, 1996. [85] M. Suppa, “The process and pastes for the via hole plugging of HDI PCBs,” Circuit World, vol. 34, pp. 25–31, 2008. [86] M. Lefebvre, G. Allardyce, M. Seita, H. Tsuchida, M. Kusaka, and S. Hayashi, “Copper Electroplating Technology for Microvia Filling,” Circuit World, vol. 29, pp. 9–14, 2003. [87] R. Tenno and A. Pohjoranta, “An ALE Model for Prediction and Control of the Microvia Fill Process with Two Additives,” Journal of the Electrochemical Society, vol. 155, pp. D383–D388, 2008. [88] W. P. Dow, M. Y. Yen, S. Z. Liao, Y. D. Chiu, and H. C. Huang, “Filling Mechanism in Microvia Metallization by Copper Electroplating,” Electrochimica Acta, vol. 53, pp. 8228–8237, 2008. [89] W.-P. Dow, C.-C. Li, Y.-C. Su, S.-P. Shen, C.-C. Huang, C. Lee, B. Hsu, and S. Hsu, “Microvia filling by copper electroplating using diazine black as a leveler,” Electrochimica Acta, vol. 54, pp. 5894–5901, 2009. [90] W. W. Wenas, A. Yamada, M. Konagai, and K. Takahashi, “Textured ZnO Thin Films for Solar Cells Grown by Metalorganic Chemical Vapor Deposition, ”Japanese Journal of Applied Physics, vol. 30, pp. L441–L443, 1991. [91] P. Dixit and J. Miaoz, “Aspect-Ratio-Dependent Copper Electrodeposition Tech-nique for Very High Aspect-Ratio Through-Hole Plating,” Journal of the Electro-chemical Society, vol. 153, pp. G552–G559, 2006. [92] P. Dixit, J. Miaoz, and R. Preisser, “Fabrication of high aspect ratio 35 mu m pitch through-wafer copper interconnects by electroplating for 3-D wafer stack- ing,” Electrochemical and Solid State Letters, vol. 9, pp. G305–G308, 2006. [93] W.-P. Dow, H.-H. Chen, M.-Y. Yen, W.-H. Chen, K.-H. Hsu, P.-Y. Chuang, H. Ishizuka, N. Sakagawa, and R. Kimizuka, “Through-Hole Filling by Copper Electroplating,” Journal of the Electrochemical Society, vol. 155, pp. D750–D757,2008. [94] W.-P. Dow, C.-W. Lu, J.-Y. Lin, and F.-C. Hsu, “Highly Selective Cu Electrodepo-sition for Filling Through Silicon Holes,” Electrochemical and Solid-State Letters, vol. 14, pp. D63–D67, 2011. [95] W. P. Dow, D. H. Liu, C. W. Lu, C. H. Chen, J. J. Yan, and S. M. Huang, “Through-hole filling by copper electroplating using a single organic additive,” Electrochem-ical and Solid State Letters, vol. 14, pp. D13–D15, 2011. [96] F. Y. Shen, W. P. Dow, A. H. Liu, J. Y. Lin, P. H. Chang, and S. M. Huang, “Periodic pulse reverse Cu plating for through-hole filling,” ECS Electrochemistry Letters, vol. 2, pp. D23–D25, 2013. [97] W. P. Dow and H. H. Chen, “A novel copper electroplating formula for laser-drilled micro via and through hole filling,” Circuit World, vol. 30, pp. 33–36, 2004. [98] C. H. Chen, C. W. Lu, S. M. Huang, and W. P. Dow, “Effects of supporting elec-trolytes on copper electroplating for filling through-hole,” Electrochimica Acta, vol. 56, pp. 5954–5960, 2011 [99] G. Y. Lin, J. J. Yan, M. Y. Yen, W. P. Dow, and S. M. Huang, “Characterization of Through-Hole Filling by Copper Electroplating Using a Tetrazolium Salt Inhibitor, ”Journal of The Electrochemical Society, vol. 160, pp. D3028–D3034, 2013. [100] A. Ulman, “Formation and Structure of Self-Assembled Monolayers,” Chemical Reviews, vol. 96, pp. 1533–1554, 1996. [101] J. J. Yan, L. C. Chang, C. W. Lu, and W. P. Dow, “Effects of organic acids on through-hole filling by copper electroplating,” Electrochimica Acta, vol. 109, pp. 1–12, 2013. [102] Y. T. Lin, M. L. Wang, C. F. Hsu, W. P. Dow, S. M. Lin, and J. J. Yang, “Through-Hole Filling in a Cu Plating Bath with Functional Insoluble Anodes and Acetic Acid as a Supporting Electrolyte,” Journal of The Electrochemical Society, vol. 160, pp. D3149–D3153, 2013. [103] W. P. Dow, H. H. Chen, M. Y. Yen , W. H. Chen, K. H. Hsu, P. Y. Chuang, H. Ishizuka, N. Sakagawa and R. Kimizukad, “Through-Hole Filling by Copper Electroplating”, J. Electrochem. Soc., 2008, 155, 750. [104] 汪建民, 材料分析: 中國材料科學學會發行, 1998年。 [105] 張立信, “表面化學分析技術,” 國家奈米元件實驗室奈米通訊, vol. 19, no. 4, pp. 17-23, 2012. [106] 陳柏廷,“利用還原氧化石墨烯之接枝於矽與玻璃穿孔之電鍍銅填充研究”,國立中興大學化工系碩士論文,民國106年。 [107] R. E. Johnson Jr, and R. H. Dettre, “Contact angle hysteresis. III. Study of an idealized heterogeneous surface,” The journal of physical chemistry, vol. 68, no. 7, pp. 1744-1750, 1964. [108] R. N. Wenzel, “Surface roughness and contact angle,” The Journal of Physical Chemistry, vol. 53, no. 9, pp. 1466-1467, 1949. [109] 周志豪,“利用超音波與電化學法處理螯合性含銅廢水”,朝陽科技大學環境工程與管理系,民國94年。 [110] G. Liu, X. Li, P. Ganesan, and B. N. Popov, 'Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells,' Electrochimica Acta, vol. 55, no. 8, pp. 2853-2858, 2010. [111] I. Ohno, O. Wakabayashi, and S. Haruyama, 'Anodic oxidation of reductants in electroless plating,' Journal of the electrochemical society, vol. 132, no. 10, pp. 2323-2330, 1985. [112] S. Armini and A. M. Caro, 'Materials Engineering for Future Interconnects:“Catalyst-Free” Electroless Cu Deposition on Self-Assembled Monolayer Alternative Barriers,' Journal of the Electrochemical Society, vol. 157, no. 1, pp. D74-D80, 2010. [113] 林定皓、陳正雄,”黑棕化與壓合”,全華科技圖書,民國100年。 [114] 陳祖啟,“銅光澤劑對通孔電鍍均擲力與熱信賴度影響”,國立中興大學化工系碩士論文,民國105年。 [115] A. Vaskelis, A. Jagminiene, R. Juškenas, E. Matulionis, and E. Norkus, 'Structure of electroless silver coatings obtained using cobalt (II) as reducing agent,' Surface and Coatings technology, vol. 82, no. 1-2, pp. 165-168, 1996. [116] A. Vaškelis, G. Stalnionis, and Z. Jusys, 'Cyclic voltammetry and quartz crystal microgravimetry study of autocatalytic copper (II) reduction by cobalt (II) in ethylenediamine solutions,' Journal of Electroanalytical Chemistry, vol. 465, no. 2, pp. 142-152, 1999. [117] A. Vaškelis and E. Norkus, 'Autocatalytic processes of copper (II) and silver (I) reduction by cobalt (II) complexes,' Electrochimica acta, vol. 44, no. 21-22, pp. 3667-3677, 1999. [118] A. Jagminienë, A. Vaðkelis, I. Stankevièienë, and L. T. Tamaðiûnaitë, 'Electroless copper deposition using Co (II)--deiethylenetriamine complex as reducing agent,' Chemija, vol. 16, no. 2, 2005. [119] A. Vaškelis, H. Norkus, G. Rozovskis, and H. Vinkevičius, 'New methods of electroless plating and direct electroplating of plastics,' Transactions of the IMF, vol. 75, no. 1, pp. 1-3, 1997. [120] J. P. Chen and L. Lim, 'Key factors in chemical reduction by hydrazine for recovery of precious metals,' Chemosphere, vol. 49, no. 4, pp. 363-370, 2002. [121] Y. Zhou, C. Fang, Y. Fang, F. Zhu, H. Liu, and H. Ge, 'Hydrogen generation mechanism of BH4− spontaneous hydrolysis: A sight from ab initio calculation,' International Journal of Hydrogen Energy, vol. 41, no. 48, pp. 22668-22676, 2016. [122] R. R. Schrock, T. E. Glassman, and M. G. Vale, 'Cleavage of the nitrogen-nitrogen bond in a high oxidation state tungsten or molybdenum hydrazine complex and the catalytic reduction of hydrazine,' Journal of the American Chemical Society, vol. 113, no. 2, pp. 725-726, 1991. [123] Y. Li, L. Li, H. Liao, and H. Wang, 'Preparation of pure nickel, cobalt, nickel–cobalt and nickel–copper alloys by hydrothermal reduction,' Journal of Materials Chemistry, vol. 9, no. 10, pp. 2675-2677, 1999. [124] F. Hanna, Z. A. Hamid, and A. A. Aal, 'Controlling factors affecting the stability and rate of electroless copper plating,' Materials Letters, vol. 58, no. 1-2, pp. 104-109, 2004. [125] J. Espinós, J. Morales, A. Barranco, A. Caballero, J. Holgado, and A. González-Elipe, 'Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts,' The Journal of Physical Chemistry B, vol. 106, no. 27, pp. 6921-6929, 2002.
摘要: 
印刷電路板(PCB)是電子元件中的重要支撐部件,可以通過銅的蝕刻圖案在非導體的電路板上傳輸電子信號,而隨著時代的進步和技術的發展,電子元件朝向輕、薄、短、小與低成本的發展趨勢,作為電子產品重要組件的電路板也邁向高互連、多功能、高可靠性、便攜性與高性能等方向前進,而具有通孔的電路板金屬化更是關鍵的一步。目前電路板傳統的金屬化技術是使用錫鈀膠體或螯合鈀離子作為無電電鍍的催化劑來製造電路板;然而近年來鈀的價格上漲,並且在半加成製程(SAP)中的樹脂需要進行額外的除鈀步驟,以防止在電子產品銅線之間可能出現短路等可靠度與品質不良等問題。

由於鈀價格昂貴且難以從SAP製程中的樹脂表面去除。因此本研究中吾人開發了一種新的無電電鍍觸媒,試圖解決使用鈀觸媒的高成本與製程可靠性等問題,近年來越來越多的參考文獻正在研究其他無電電鍍的觸媒,而金屬離子觸媒是用於非導電基材金屬化的最新觸媒之一,故吾人提出了以螯合離子銅作為無電電鍍銅的觸媒進行研究。

在電路板金屬化的製程中是由許多化學反應過程所組成,本研究的目的是確認螯合離子銅在無電電鍍銅製程中應用的可能性,並以一四級銨化合物作為通孔側壁前處理的整孔劑,其中螯合銅離子的螯合劑可與整孔劑產生化學鍵結,而接枝上螯合離子銅的電路板被還原劑還原成銅原子並誘發無電電鍍銅反應;在每個無電電鍍銅的步驟中,利用SEM、接觸角測定儀、XPS等來確認電路板上的性質與元素,結果顯示螯合銅離子具備和鈀相同的優良觸媒性質,並可以通過熱信賴度測試。

Printed Circuit Board (PCB) is an important mechanical support for electronic components, it can transmit electronic signal on a non-conductive PCB by the etched copper patterns. With the progress of the times and since the rapid increase in technology, electronics components tend toward light, slim, short, small and low cost. Thus the PCBs, which are the important component of electronic products become high interconnection, multi-function, high reliability and portable performance. The metallization of a PCB with through holes is a key point step. Up to know, the traditional metallization process uses tin/palladium colloid or complexed palladium ion as a catalyst for electroless copper deposition to fabricate PCB. However, the price of palladium is risen year by year and it needs an extra palladium-removal process on the resin of semi-additive process (SAP) to prevent a possible short between two copper lines under consideration of reliability and quality for electronic products.
Since palladium is expensive and hard to be removed from a resin surface of SAP process. Herein, we develop a new catalyst for electroless process in this study and attempt to resolve the cost, process and reliability issues using palladium process. In recent years, more and more references were studying in other electroless catalyst. Metal-ion catalyst is one of the newest catalysts for non-conductive substrates metallization. In the light of this, we propose a complexed copper ion as a catalyst for electroless copper plating.
Because PCB metallization is consist of many chemical reaction processes and we aim for checking possibility of the complexed copper ion in electroless copper plating. We utilize quaternary amine as a conditioner for sidewall pre-treatment of through holes and then the chelators of complexed copper ion can chemically bond with conditioner. The PCB which is grafted with copper ions was reducted by a reducer to copper atom and initiate copper electroless reaction. In each step of electroless plating process, SEM, contact angle, XPS was used to examine properties and elements on the PCB. The results show that the performance of the complexed copper ion is as good as the palladium and it can pass the thermal reliability.
URI: http://hdl.handle.net/11455/99531
Rights: 同意授權瀏覽/列印電子全文服務,2018-07-20起公開。
Appears in Collections:化學工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-107-7105065049-1.pdf18.44 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.