Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/99572
標題: 不同基因構築之抗菌胜肽mastoparan 生產最適化與純化之研究
Study on the optimal production and purification of antibacterial peptide mastoparan with various gene constructions
作者: 鐘崧桓
Sung-Huan Chung
關鍵字: mastoparan;抗菌胜肽;生產最適化;質體不穩定性;多重抗藥性;mastoparan;antimicrobial peptides;optimal production;plastid instability;multiple drug resistance
引用: 1. Fernandes, P. and E. Martens, Antibiotics in late clinical development. Biochemical Pharmacology, 2017. 133: p. 152-163. 2. Jin, F., Q. Sun, X. Xu, L. Li, G. Gao, Y. Xu, X. Yu, and S. Ren, cDNA cloning and characterization of the antibacterial peptide cecropin 1 from the diamondback moth, Plutella xylostella L. Protein Expression and Purification, 2012. 85(2): p. 230-238. 3. Jiang, Q., H. Zhang, Y. Xie, and Y. Wang, Recombinant expression of porcine lactoferrin peptide LF-6 with intein technology and its immunomodulatory function in ETEC K88-infected mice. International Immunopharmacology, 2016. 39: p. 181-191. 4. 永信製藥, 抗生素之含藥飼料添加之禁用與轉型. 永信藥訊電子報, 2014. 5. Park, J.W., S.-J. Nam, and Y.J. Yoon, Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics. Biochemical Pharmacology, 2017. 134: p. 56-73. 6. Sedaghati, M., H. Ezzatpanah, M. Mashhadi Akbar Boojar, M. Tajabadi Ebrahimi, and F. Kobarfard, Isolation and identification of some antibacterial peptides in the plasmin-digest of β-casein. LWT - Food Science and Technology, 2016. 68: p. 217-225. 7. Chengchu, L., C. Wang, J. Liu, L. Jianzhang, and S. Yi-Cheng. Fusion expression of antibacterial peptide salmine from genetically engineered bacteria. in 2010 International Conference on Bioinformatics and Biomedical Technology. 2010. 8. Lozeau, L.D., T.E. Alexander, and T.A. Camesano. Effectiveness of a surface-bound antimicrobial peptide as a function of tether length. in 2014 40th Annual Northeast Bioengineering Conference (NEBEC). 2014. 9. Domínguez, C.L., P. Rondón-Villarreal, and D.A. Sierra. Classification of peptides using ensembles by applying different strategies that deal with imbalanced data and combination rules. in 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV). 2015. 10. Wang, H., X. Zhao, R. Liu, Q. Wei, and F. Lu. Heterologous Expression of Bovine Lactoferricin in Escherichia Coli. in 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. 2008. 11. Zhao, M.-X., Z. Chi, Z.-M. Chi, and C. Madzak, The simultaneous production of single-cell protein and a recombinant antibacterial peptide by expression of an antibacterial peptide gene in Yarrowia lipolytica. Process Biochemistry, 2013. 48(2): p. 212-217. 12. Zhang, J., A. Movahedi, Z. Wei, M. Sang, X. Wu, M. Wang, H. Wei, H. Pan, T. Yin, and Q. Zhuge, High-level SUMO-mediated fusion expression of ABP-dHC-cecropin A from multiple joined genes in Escherichia coli. Analytical Biochemistry, 2016. 509: p. 15-23. 13. Perumal Samy, R., B.G. Stiles, O.L. Franco, G. Sethi, and L.H.K. Lim, Animal venoms as antimicrobial agents. Biochemical Pharmacology, 2017. 134: p. 127-138. 14. Harrison, P.L., M.A. Abdel-Rahman, K. Miller, and P.N. Strong, Antimicrobial peptides from scorpion venoms. Toxicon, 2014. 88: p. 115-137. 15. Lin, C.-H., M.-C. Lee, J.T.C. Tzen, H.-M. Lee, S.-M. Chang, W.-C. Tu, and C.-F. Lin, Efficacy of Mastoparan-AF alone and in combination with clinically used antibiotics on nosocomial multidrug-resistant Acinetobacter baumannii. Saudi Journal of Biological Sciences. 16. Irazazabal, L.N., W.F. Porto, S.M. Ribeiro, S. Casale, V. Humblot, A. Ladram, and O.L. Franco, Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016. 1858(11): p. 2699-2708. 17. Lin, C.H., R.F. Hou, C.L. Shyu, W.Y. Shia, C.F. Lin, and W.C. Tu, In vitro activity of mastoparan-AF alone and in combination with clinically used antibiotics against multiple-antibiotic-resistant Escherichia coli isolates from animals. Peptides, 2012. 36(1): p. 114-20. 18. Yang, X., Y. Wang, W.H. Lee, and Y. Zhang, Antimicrobial peptides from the venom gland of the social wasp Vespa tropica. Toxicon, 2013. 74: p. 151-7. 19. Chen, W., X. Yang, X. Yang, L. Zhai, Z. Lu, J. Liu, and H. Yu, Antimicrobial peptides from the venoms of Vespa bicolor Fabricius. Peptides, 2008. 29(11): p. 1887-1892. 20. Yoon, K.A., K. Kim, P. Nguyen, J.B. Seo, Y.H. Park, K.-G. Kim, H.-y. Seo, Y.H. Koh, and S.H. Lee, Comparative bioactivities of mastoparans from social hornets Vespa crabro and Vespa analis. Journal of Asia-Pacific Entomology, 2015. 18(4): p. 825-829. 21. Huang, R., L. Wang, M. Zhou, T. Chen, and C. Shaw, Antimicrobial peptides in the venom of the European hornet, Vespa crabro, identified as mastoparan C and crabrolin. Regulatory Peptides, 2010. 164(1): p. 48-49. 22. Yang, M.J., W.-Y. Lin, C.-H. Lin, C.-L. Shyu, R.F. Hou, and W.-C. Tu, Enhancing antimicrobial activity of mastoparan-B by amino acid substitutions. Journal of Asia-Pacific Entomology, 2013. 16(4): p. 349-355. 23. Lin, C.H., J.T. Tzen, C.L. Shyu, M.J. Yang, and W.C. Tu, Structural and biological characterization of mastoparans in the venom of Vespa species in Taiwan. Peptides, 2011. 32(10): p. 2027-36. 24. Vargas-Cortez, T., J.R. Morones-Ramirez, I. Balderas-Renteria, and X. Zarate, Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H+. Protein Expression and Purification, 2017. 132: p. 44-49. 25. Mou, C., L. Zhu, X. Xing, J. Lin, and Q. Yang, Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs. Antiviral Research, 2016. 131: p. 74-84. 26. Esipov, R.S., V.N. Stepanenko, L.A. Chupova, U.A. Boyarskikh, M.L. Filipenko, and A.I. Miroshnikov, Production of recombinant human epidermal growth factor using Ssp dnaB mini-intein system. Protein Expr Purif, 2008. 61(1): p. 1-6. 27. Çelik, E. and P. Çalık, Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012. 30(5): p. 1108-1118. 28. 蘇遠志, 微生物系統. 29. Swiech, K., V. Picanço-Castro, and D.T. Covas, Human cells: New platform for recombinant therapeutic protein production. Protein Expression and Purification, 2012. 84(1): p. 147-153. 30. Hua, Y., C. Wang, J. Huang, and K. Wang, A simple and efficient method for CRISPR/Cas9-induced mutant screening. Journal of Genetics and Genomics, 2017. 44(4): p. 207-213. 31. Gillis, A. and J. Mahillon, An improved method for rapid generation and screening of Bacillus thuringiensis phage-resistant mutants. Journal of Microbiological Methods, 2014. 106: p. 101-103. 32. Belfort, M., Mobile self-splicing introns and inteins as environmental sensors. Current Opinion in Microbiology, 2017. 38: p. 51-58. 33. Mathys, S., T.C. Evans Jr, I.C. Chute, H. Wu, S. Chong, J. Benner, X.-Q. Liu, and M.-Q. Xu, Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene, 1999. 231(1–2): p. 1-13. 34. Sun, P., S. Ye, S. Ferrandon, T.C. Evans, M.-Q. Xu, and Z. Rao, Crystal Structures of an Intein from the Split dnaE Gene of Synechocystis sp. PCC6803 Reveal the Catalytic Model Without the Penultimate Histidine and the Mechanism of Zinc Ion Inhibition of Protein Splicing. Journal of Molecular Biology, 2005. 353(5): p. 1093-1105. 35. Kumar, V. and L.R. Gowda, Production of horsegram (Dolichos biflorus) Bowman-Birk inhibitor by an intein mediated protein purification system. Protein Expr Purif, 2013. 89(1): p. 16-24. 36. Pina, A.S., C.R. Lowe, and A.C.A. Roque, Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnology Advances, 2014. 32(2): p. 366-381. 37. Arora, S., V. Saxena, and B.V. Ayyar, Affinity chromatography: A versatile technique for antibody purification. Methods, 2017. 116: p. 84-94. 38. Alishah, K., S. Asad, K. Khajeh, and N. Akbari, Utilizing intein-mediated protein cleaving for purification of uricase, a multimeric enzyme. Enzyme Microb Technol, 2016. 93-94: p. 92-98. 39. Coolbaugh, M.J., M.J. Shakalli Tang, and D.W. Wood, High-throughput purification of recombinant proteins using self-cleaving intein tags. Anal Biochem, 2017. 516: p. 65-74. 40. Sharma, S.S., S. Chong, and S.W. Harcum, Intein-mediated protein purification of fusion proteins expressed under high-cell density conditions in E. coli. Journal of Biotechnology, 2006. 125(1): p. 48-56. 41. Zhou, Q.-F., X.-G. Luo, L. Ye, and T. Xi, High-Level Production of a Novel Antimicrobial Peptide Perinerin in Escherichia coli by Fusion Expression. Current Microbiology, 2007. 54(5): p. 366-370. 42. Xu, X., F. Jin, X. Yu, S. Ji, J. Wang, H. Cheng, C. Wang, and W. Zhang, Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli. Protein Expression and Purification, 2007. 53(2): p. 293-301. 43. Meng, D.-M., H.-X. Dai, X.-F. Gao, J.-F. Zhao, Y.-J. Guo, X. Ling, B. Dong, Z.-Q. Zhang, and Z.-C. Fan, Expression, purification and initial characterization of a novel recombinant antimicrobial peptide Mytichitin-A in Pichia pastoris. Protein Expression and Purification, 2016. 127: p. 35-43. 44. Xu, X., F. Jin, X. Yu, S. Ren, J. Hu, and W. Zhang, High-level expression of the recombinant hybrid peptide cecropinA(1-8)–magainin2(1-12) with an ubiquitin fusion partner in Escherichia coli. Protein Expression and Purification, 2007. 55(1): p. 175-182. 45. Mitchell, S.F. and J.R. Lorsch, Chapter Eight - Protein Affinity Purification using Intein/Chitin Binding Protein Tags, in Methods in Enzymology, R.L. Jon, Editor. 2015, Academic Press. p. 111-125. 46. Morassutti, C., F. De Amicis, A. Bandiera, and S. Marchetti, Expression of SMAP-29 cathelicidin-like peptide in bacterial cells by intein-mediated system. Protein Expression and Purification, 2005. 39(2): p. 160-168. 47. Bataille, L., W. Dieryck, A. Hocquellet, C. Cabanne, K. Bathany, S. Lecommandoux, B. Garbay, and E. Garanger, Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag. Protein Expression and Purification, 2015. 110: p. 165-171. 48. Yang, K., Y. Su, J. Li, J. Sun, and Y. Yang, Expression and purification of the antimicrobial peptide cecropin AD by fusion with cationic elastin-like polypeptides. Protein Expression and Purification, 2012. 85(2): p. 200-203. 49. Trine Christensen, K.T.-C., Sue Dagher, Mohammed F. Shamji, Miriam Amiram, Lori A. Setton, and Ashutosh Chilkoti, Elastin-like Polypeptides as Purification Tags: Orientation Controls Expression Levels and Activities of the Fusion Proteins. 2008. 50. MacEwan, S.R. and A. Chilkoti, Applications of elastin-like polypeptides in drug delivery. J Control Release, 2014. 190: p. 314-30. 51. Zheng, C., Z. Zhao, Y. Li, L. Wang, and Z. Su, Effect of IPTG amount on apo- and holo- forms of glycerophosphate oxidase expressed in Escherichia coli. Protein Expression and Purification, 2011. 75(2): p. 133-137. 52. 余波、程安春、汪銘書, 大腸桿菌中重組蛋白可溶性表達的研究進展與展望. 黑龍江畜牧獸醫, 2008年第10期. 53. Friehs, K., Plasmid Copy Number and Plasmid Stability, in New Trends and Developments in Biochemical Engineering, T. Scheper, Editor. 2004, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 47-82. 54. 璠澐生技, 蛋白表現要達到極致的注意事項.
摘要: 
Mastoparan為一種從虎頭蜂身上萃取出的抗菌胜肽,在文獻中已證實具有殺死革蘭氏陽性菌、革蘭氏陰性菌和真菌的效果,且對真核細胞的傷害極低,在抗菌藥物的生產上有很大的潛力。然而,如果直接從生物上萃取,不但量少而且成本昂貴,因此採用生物轉殖技術進行生物發酵,將可壓低生產成本並減少人力。
本研究利用基因工程的方法生產抗菌胜肽mastoparan,取用4種台灣常見虎頭蜂的mastoparan抗菌胜肽,MP-AF、MP-B、MP-D和MP-M,在蛋白上的N端和C端分別設計了chitin-binding-domain(CBD)和6個Histidine,期望以親和性吸附管柱CBD affinity tag column和poly his tag column來進行純化。然而mastoparan本身為毒蛋白,且實驗發現質體很不穩定,直接導致了蛋白表現量極低。因此我們採用了許多不同的誘導條件優化蛋白生產,探討出在誘導前加入營養物yeast extract並在生長對數期後期和15℃誘導,可以大大的提升可溶性蛋白產量20倍以上,純化前的目標蛋白(CBD-INT-MP-M-6His)的產量約為200mg/L,在大量的蛋白表現下,純化步驟會變得容易許多,以利於後續的研究。

Mastoparan is an antimicrobial peptide extracted from the Vespa, which has the effect of killing Gram-positive bacteria, Gram-negative bacteria and fungi, and has very low damage to eukaryotic cells. It was of great potential for production of antimicrobial drugs. However, if directly extracted from the biological, the production amount will be small and expensive. The application of the gene transfer to the recombinant strain will be able to reduce the production costs.
In this study, we use 4 kinds of mastoparan, i.e., MP-AF, MP-B, MP-D and MP-M, which were obtained from the venom of Vespa species in Taiwan. The fusion protein was constructed with its N-terminal designed with chitin-binding-domain plus ssp dnaB intein (CBD-INT) and and C-terminal with 6 histidines. In this way, the affinity adsorption columns such as CBD affinity tag column and poly his-tag column can be used for the mastoparans purification. Owing to the toxicity of mastoparans, the construction of plasmid is extremely unstable. The direct fusion protein expression is very low. Many different induction conditions were tried to optimize the soluble protein production. It was found that when yeast extract was added during the IPTG induction in the late logarithmic phase, the soluble protein yield could be enhanced more than 20 times, the target protein before purification (CBD- INT-MP-M-6His) is about 200 mg / L. The large amount of soluble proteins would facilitate the subsequent purification studies.
URI: http://hdl.handle.net/11455/99572
Rights: 同意授權瀏覽/列印電子全文服務,2020-08-04起公開。
Appears in Collections:化學工程學系所

Files in This Item:
File SizeFormat Existing users please Login
nchu-106-7104065008-1.pdf2.03 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.