Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/9979
標題: Characterization and Fabrication of Nickel and Nickel Oxide Nanowires using Aluminum Oxide as Templates
氧化鋁模版應用於鎳及氧化鎳奈米線
作者: 陳秋傑
關鍵字: Nanowires;奈米金屬線;Nickel;Nickel Oxide;annealing;Aluminum Oxide;electrodeposition;NiO;Ni2O3;鎳;氧化鎳;退火;氧化鋁;電解沈積
出版社: 材料工程學研究所
摘要: 
由於奈米材料技術(nanomaterial technology)應用於光學(optical)、生物工程(bioengineering)、微電子元件(micro-electronic element)或半導體(semi-conductor)等科技上均有良好的發展潛能。近年來文獻中多提及其製造(fabrication)技術,其中大部份以半導體技術為製程,製程中要求高真空度,昂貴的儀器設備,而且製程時間甚長,相對地使奈米材料(元件)於量產上受到了限制。
本研究將提供一簡便之製造奈米線材製程與方法,改善以上諸問題,將該高純度鋁箔經陽極處理後產生陣列式之奈米孔洞,最後以電解沈積法將離子態之金屬注入奈米孔洞內,氧化還原後製得奈米金屬、利用後續之熱處理氧化得奈米氧化物,分析線材之物理特性,量測其場發射效應。理論探討方面,將利用電化學法、研究基材與氧化層間之介面反應,取得最佳的控制參數,使奈米孔洞之陣列分佈(dispersion)、孔徑(diameters)、徑深(depths)得到較佳之控制,以電壓和時間或電流和時間為控制參數。
另更進一步討論溫度與其他參數的關係,以期將製程簡單化,將奈米孔洞模版製程之溫度提升,及孔洞排列更為規則,孔洞尺寸更為一致化,以期能使後段生產之奈米線材能更穩定。另外,由熱力學的反應動力學與擴散理論探討奈米孔洞成長之活化能及形成之機構。
本論文所涵蓋使用之分析技術有:(1)場發射式電子顯微鏡(Field Emission Scanning Electron Microscopy ; FESEM)研究表面形態、(2)穿透式電子顯微鏡(Transmission Electron Microscopy;TEM)研究線材的形貌﹑缺陷以及形成晶格、(3)X光繞射儀(X-ray Diffractometer ; XRD)測定晶體結構。

Nanomaterial technology, owing to the applications of optical, bioengineering, micro-electronic elements, and semi-conductor technology, has good potential applications in the future generation of nanodevices. There are many methods involved in the fabrication for nanomaterials especially in the semiconductor processes in recent years. However, high vacuum, expensive equipment and fabrication time were taken into consideration. This study offers a simple method to produce the metal nanowires. The high pure aluminum prepared by thermal vapor deposition was formed as the ordered nanochannels using aluminum anodic oxidation process. And they were used as templates materials to synthesize the metal nanowire by electordeposition.
The mechanism of nanopores and nanowires has not been clearly understood. In this work, we will utilize the electrochemical methods to study the reactions between the substrate and oxide layer interface. Optimal voltage and time have been made to fabricate the uniform diameters, depths and dispersion of nanopores. Furthermore, using thermodynamic and diffusion principles discovers the forming mechanism of the nanopores.
The analysis techniques were used in this work are: (1)Field Emission Scanning Electron Microscopy(FESEM)for observation the surface morphologies;(2)Transmission Electron Microscopy (TEM) for observing the surface morphologies, defects and crystal structures;(3)X-ray Diffraction(XRD)for determining the crystal structure.
URI: http://hdl.handle.net/11455/9979
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.